If you made any changes in Pure, your changes will be visible here soon.

Research Output 1995 2018

  • 43 Citations
  • 4 h-Index
  • 12 Article
  • 2 Book
  • 1 Paper
Filter
Article
2018
1 Citation (Scopus)
Singularly Perturbed Boundary Value Problem
Small Parameter
Numerical integration
Boundary value problems
Boundary layers

Hypersingular nonlinear boundary-value problems with a small parameter

Polyanin, A. D. & Shingareva, I. K., 1 Jul 2018, In : Applied Mathematics Letters. p. 93-98 6 p.

Research output: Contribution to journalArticleResearchpeer-review

Nonlinear Boundary Value Problems
Small Parameter
Boundary value problems
Boundary Layer
Boundary layers
2 Citations (Scopus)

Nonlinear problems with blow-up solutions: Numerical integration based on differential and nonlocal transformations, and differential constraints

Polyanin, A. D. & Shingareva, I. K., 1 Nov 2018, In : Applied Mathematics and Computation. p. 107-137 31 p.

Research output: Contribution to journalArticleResearchpeer-review

Blow-up Solution
Numerical integration
Nonlinear Problem
Numerical methods
Blow molding
4 Citations (Scopus)
Blow-up Solution
Numerical integration
Test Problems
Nonlinear Problem
Exact Solution
5 Citations (Scopus)

Non-monotonic blow-up problems: Test problems with solutions in elementary functions, numerical integration based on non-local transformations

Polyanin, A. D. & Shingareva, I. K., 1 Feb 2018, In : Applied Mathematics Letters. p. 123-129 7 p.

Research output: Contribution to journalArticleResearchpeer-review

Elementary Functions
Numerical integration
Blow-up
Test Problems
Exact Solution
2017
7 Citations (Scopus)

The use of differential and non-local transformations for numerical integration of non-linear blow-up problems

Polyanin, A. D. & Shingareva, I. K., 1 Oct 2017, In : International Journal of Non-Linear Mechanics. p. 178-184 7 p.

Research output: Contribution to journalArticleResearchpeer-review

Numerical integration
Blow-up
Blow molding
Numerical methods
Derivatives
2015
2 Citations (Scopus)

On Different Symbolic Notations for Derivatives

Shingareva, I. K. & Lizárraga-Celaya, C., 1 Sep 2015, In : Mathematical Intelligencer. p. 33-38 6 p.

Research output: Contribution to journalArticleResearchpeer-review

On Different Symbolic Notations for Derivatives

Shingareva Inna, I. & Lizarraga-Celaya, C., Sep 2015, In : Mathematical Intelligencer. 37, 3, p. 33-38

Research output: Contribution to journalArticleResearchpeer-review

2014

Higher-order asymptotic solutions in fluids of various configurations

Shingareva, I. K. & Lizárraga-Celaya, C., 1 Feb 2014, In : Journal of Applied Mathematics and Computing. p. 167-186 20 p.

Research output: Contribution to journalArticleResearchpeer-review

Higher-order Asymptotics
Asymptotic Solution
Standing Wave
Fluid
Configuration
2013

Refereeing process in mathematics and physics: Meaningful changes and models for improvement

Shingareva, I. K. & Lizárraga-Celaya, C., 1 Sep 2013, In : Publishing Research Quarterly. p. 271-284 14 p.

Research output: Contribution to journalArticleResearchpeer-review

physics
Physics
mathematics
Feedback
Other Sciences
2012
3 Citations (Scopus)

Relevant changes in scientific publishing in mathematics and physics

Shingareva, I. & Lizarraga-Celaya, C., 1 Dec 2012, In : Publishing Research Quarterly. p. 294-306 13 p.

Research output: Contribution to journalArticleResearchpeer-review

physics
Physics
mathematics
Other Sciences
new media
1995

Analytic derivation of the dependence of the frequency of standing surface waves on the amplitude in a liquid of finite depth

Bordakov, G. A., Karpov, I. I., Sekerzh-Zen'kovich, S. Y. & Shingareva, I. K., 1 Dec 1995, In : Computational Mathematics and Mathematical Physics. p. 1423-1428 6 p.

Research output: Contribution to journalArticleResearchpeer-review

Standing Wave
Surface Waves
Surface waves
Liquid
Liquids