TY - JOUR
T1 - A modeling approach reveals differences in evapotranspiration and its partitioning in two semiarid ecosystems in Northwest Mexico
AU - Méndez-Barroso, Luis A.
AU - Vivoni, Enrique R.
AU - Robles-Morua, Agustin
AU - Mascaro, Giuseppe
AU - Yépez, Enrico A.
AU - Rodríguez, Julio C.
AU - Watts, Christopher J.
AU - Garatuza-Payán, Jaime
AU - Saíz-Hernández, Juan A.
PY - 2014/4
Y1 - 2014/4
N2 - Seasonal vegetation changes during the North American monsoon play a major role in modifying water, energy, and momentum fluxes. Nevertheless, most models parameterize plants as a static component or with averaged seasonal variations that ignore interannual differences and their potential impact on evapotranspiration (ET) and its components. Here vegetation parameters derived from remote sensing data were coupled with a hydrologic model at two eddy covariance (EC) sites with observations spanning multiple summers. Sinaloan thornscrub (ST) and Madrean woodland (MW) sites, arranged at intermediate and high elevations along mountain fronts in northwest Mexico, occupy specific niches related to climate conditions and water availability that are poorly understood. We found that simulations with a dynamic representation of vegetation greening tracked well the seasonal evolution of observed ET and soil moisture (SM). A switch in the dominant component of ET from soil evaporation (E) to plant transpiration (T) was observed for each ecosystem depending on the timing and magnitude of vegetation greening that is directly tied to rainfall characteristics. Differences in vegetation greening at the ST and MW sites lead to a dominance of transpiration at ST (T/ET = 57%), but evaporation-dominant conditions at MW (T/ET = 19%). Peak transpiration occurred at 5 and 20 days after the full canopy development in the ST and MW sites, respectively. These results indicate that evapotranspiration timing and partitioning varies considerably in the two studied ecosystems in accordance with different modes of vegetation greening. Intermediate-elevation ecosystems follow an intensive water use strategy with a rapid and robust transpiration response to water availability. In contrast, higher elevation sites have delayed and attenuated transpiration, suggesting an extensive water use strategy persisting beyond the North American monsoon.
AB - Seasonal vegetation changes during the North American monsoon play a major role in modifying water, energy, and momentum fluxes. Nevertheless, most models parameterize plants as a static component or with averaged seasonal variations that ignore interannual differences and their potential impact on evapotranspiration (ET) and its components. Here vegetation parameters derived from remote sensing data were coupled with a hydrologic model at two eddy covariance (EC) sites with observations spanning multiple summers. Sinaloan thornscrub (ST) and Madrean woodland (MW) sites, arranged at intermediate and high elevations along mountain fronts in northwest Mexico, occupy specific niches related to climate conditions and water availability that are poorly understood. We found that simulations with a dynamic representation of vegetation greening tracked well the seasonal evolution of observed ET and soil moisture (SM). A switch in the dominant component of ET from soil evaporation (E) to plant transpiration (T) was observed for each ecosystem depending on the timing and magnitude of vegetation greening that is directly tied to rainfall characteristics. Differences in vegetation greening at the ST and MW sites lead to a dominance of transpiration at ST (T/ET = 57%), but evaporation-dominant conditions at MW (T/ET = 19%). Peak transpiration occurred at 5 and 20 days after the full canopy development in the ST and MW sites, respectively. These results indicate that evapotranspiration timing and partitioning varies considerably in the two studied ecosystems in accordance with different modes of vegetation greening. Intermediate-elevation ecosystems follow an intensive water use strategy with a rapid and robust transpiration response to water availability. In contrast, higher elevation sites have delayed and attenuated transpiration, suggesting an extensive water use strategy persisting beyond the North American monsoon.
KW - North American monsoon
KW - ecohydrology
KW - remote sensing
KW - semiarid forests
KW - soil moisture
KW - vegetation greening
UR - http://www.scopus.com/inward/record.url?scp=84899042624&partnerID=8YFLogxK
U2 - 10.1002/2013WR014838
DO - 10.1002/2013WR014838
M3 - Artículo
SN - 0043-1397
VL - 50
SP - 3229
EP - 3252
JO - Water Resources Research
JF - Water Resources Research
IS - 4
ER -