A modeling approach reveals differences in evapotranspiration and its partitioning in two semiarid ecosystems in Northwest Mexico

Luis A. Méndez-Barroso, Enrique R. Vivoni, Agustin Robles-Morua, Giuseppe Mascaro, Enrico A. Yépez, Julio C. Rodríguez, Christopher J. Watts, Jaime Garatuza-Payán, Juan A. Saíz-Hernández

Research output: Contribution to journalArticlepeer-review

48 Scopus citations


Seasonal vegetation changes during the North American monsoon play a major role in modifying water, energy, and momentum fluxes. Nevertheless, most models parameterize plants as a static component or with averaged seasonal variations that ignore interannual differences and their potential impact on evapotranspiration (ET) and its components. Here vegetation parameters derived from remote sensing data were coupled with a hydrologic model at two eddy covariance (EC) sites with observations spanning multiple summers. Sinaloan thornscrub (ST) and Madrean woodland (MW) sites, arranged at intermediate and high elevations along mountain fronts in northwest Mexico, occupy specific niches related to climate conditions and water availability that are poorly understood. We found that simulations with a dynamic representation of vegetation greening tracked well the seasonal evolution of observed ET and soil moisture (SM). A switch in the dominant component of ET from soil evaporation (E) to plant transpiration (T) was observed for each ecosystem depending on the timing and magnitude of vegetation greening that is directly tied to rainfall characteristics. Differences in vegetation greening at the ST and MW sites lead to a dominance of transpiration at ST (T/ET = 57%), but evaporation-dominant conditions at MW (T/ET = 19%). Peak transpiration occurred at 5 and 20 days after the full canopy development in the ST and MW sites, respectively. These results indicate that evapotranspiration timing and partitioning varies considerably in the two studied ecosystems in accordance with different modes of vegetation greening. Intermediate-elevation ecosystems follow an intensive water use strategy with a rapid and robust transpiration response to water availability. In contrast, higher elevation sites have delayed and attenuated transpiration, suggesting an extensive water use strategy persisting beyond the North American monsoon.

Original languageEnglish
Pages (from-to)3229-3252
Number of pages24
JournalWater Resources Research
Issue number4
StatePublished - Apr 2014


  • North American monsoon
  • ecohydrology
  • remote sensing
  • semiarid forests
  • soil moisture
  • vegetation greening


Dive into the research topics of 'A modeling approach reveals differences in evapotranspiration and its partitioning in two semiarid ecosystems in Northwest Mexico'. Together they form a unique fingerprint.

Cite this