A New Chelating Cyclophane and Its Complexation with Ni2+, Cu2+, and Zn2+: Spectroscopic Properties and Allosterism via Ring Contraction

Michiko B. Inoue*, Felipe Medrano, Motomichi Inoue, Arnold Raitsimring, Quintus Fernando

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

A condensation reaction between ethylenediaminetetraacetic dianhydride and p-xylenediamine gave a new chelating cyclophane, 3,10,21,28-terraoxo-5,8,23,26-tetrakis(carboxymethyl)-2,5,8,11,20,23,26,29- octaaza[12.12]paracyclophane, abbreviated as (32edtaxan)H4, which has three types of electron-donor groups, i.e., amine, carboxylate, and amide groups. The formation of the cyclophane has been confirmed by a single-crystal X-ray analysis of its Zn2+ complex, [Zn2(32edtaxan)]·7.5H2O, which crystallized in the monoclinic space group P21/c with a = 19.818(1) Å, b = 13.169(1) Å, c = 18.134(1) Å, β= 104.491(6)°, and Z = 4. Each cyclophane molecule coordinates two Zn2+ ions and results in the formation of a binuclear chelate molecule. The coordination geometry around each metal ion is distorted octahedral, the donor atoms being two carboxylate oxygen atoms, two amine nitrogen atoms, and two amide oxygen atoms. The new cyclophane exhibited a well-defined fluorescence band at 290 nm with 210 nm excitation. The emission intensity was markedly increased in the Zn2+ complex, in which the coordination of Zn2+ ions increases the rigidity of the cyclophane leading to a high fluorescence quantum yield. When the cyclophane was coordinated to Cu2+ ions, the molar absorptivity of a π - π* transition band observed at 260 nm was increased by a factor of about 10. Such a large spectral change was not observed for the Zn2+ and Ni2+ complexes. In the Cu2+ complex, the two phenyl rings of the cyclophane are expected to be brought closer, as a result of the coordination of deprotonated amide nitrogens to the central metal ion. This allosterism via ring contraction is responsible for the novel behavior of the absorption spectrum. The emission band of the cyclophane was weakened by coordination of copper and nickel as a result of fluorescence quenching caused by a photo-induced electron transfer.

Original languageEnglish
Pages (from-to)2335-2340
Number of pages6
JournalInorganic Chemistry
Volume36
Issue number11
DOIs
StatePublished - 1 Dec 1997

Fingerprint

Dive into the research topics of 'A New Chelating Cyclophane and Its Complexation with Ni2+, Cu2+, and Zn2+: Spectroscopic Properties and Allosterism via Ring Contraction'. Together they form a unique fingerprint.

Cite this