TY - JOUR
T1 - A self-centering active probing technique for kinematic parameter identification and verification of articulated arm coordinate measuring machines
AU - Santolaria, J.
AU - Brau, A.
AU - Velzquez, J.
AU - Aguilar, J. J.
PY - 2010
Y1 - 2010
N2 - A crucial task in the procedure of identifying the parameters of a kinematic model of an articulated arm coordinate measuring machine (AACMM) or robot arm is the process of capturing data. In this paper a capturing data method is analyzed using a self-centering active probe, which drastically reduces the capture time and the required number of positions of the gauge as compared to the usual standard and manufacturer methods. The mathematical models of the self-centering active probe and AACMM are explained, as well as the mathematical model that links the AACMM global reference system to the probe reference system. We present a self-calibration method that will allow us to determine a homogeneous transformation matrix that relates the probe's reference system to the AACMM last reference system from the probing of a single sphere. In addition, a comparison between a self-centering passive probe and self-centering active probe is carried out to show the advantages of the latter in the procedures of kinematic parameter identification and verification of the AACMM.
AB - A crucial task in the procedure of identifying the parameters of a kinematic model of an articulated arm coordinate measuring machine (AACMM) or robot arm is the process of capturing data. In this paper a capturing data method is analyzed using a self-centering active probe, which drastically reduces the capture time and the required number of positions of the gauge as compared to the usual standard and manufacturer methods. The mathematical models of the self-centering active probe and AACMM are explained, as well as the mathematical model that links the AACMM global reference system to the probe reference system. We present a self-calibration method that will allow us to determine a homogeneous transformation matrix that relates the probe's reference system to the AACMM last reference system from the probing of a single sphere. In addition, a comparison between a self-centering passive probe and self-centering active probe is carried out to show the advantages of the latter in the procedures of kinematic parameter identification and verification of the AACMM.
KW - Articulated arm coordinate measuring machine
KW - Self-calibration method
KW - Self-centering active probe
UR - http://www.scopus.com/inward/record.url?scp=77951109862&partnerID=8YFLogxK
U2 - 10.1088/0957-0233/21/5/055101
DO - 10.1088/0957-0233/21/5/055101
M3 - Artículo
SN - 0957-0233
VL - 21
JO - Measurement Science and Technology
JF - Measurement Science and Technology
IS - 5
M1 - 055101
ER -