Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent

Jesús Mauro Adolfo Villalobos-Noriega, Ericka Rodríguez León*, César Rodríguez-Beas, Eduardo Antonio Larios Rodriguez, Maribel Plascencia-Jatomea, Aaron Martínez-Higuera, Heriberto Acuña Campa, Alfonso Garcia-Galaz, Roberto Mora-Monroy, Francisco Javier Alvarez-Cirerol, Rodriguez Vazquez Blanca Esthela, Roberto Carlos Carrillo Torres, Ramón Iñiguez-Palomares*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

In this work, we used a sequential method of synthesis for gold–silver bimetallic nanoparticles with core@shell structure (Au@AgNPs). Rumex hymenosepalus root extract (Rh), which presents high content in catechins and stilbenes, was used as reductor agent in nanoparticles synthesis. Size distribution obtained by Transmission Electron Microscopy (TEM) gives a mean diameter of 36 ± 11 nm for Au@AgNPs, 24 ± 4 nm for gold nanoparticles (AuNPs), and 13 ± 3 nm for silver nanoparticles (AgNPs). The geometrical shapes of NPs were principally quasi-spherical. The thickness of the silver shell over AuNPs is around 6 nm and covered by active biomolecules onto the surface. Nanoparticles characterization included high angle annular dark field images (HAADF) recorded with a scanning transmission electron microscope (STEM), Energy-Dispersive X-ray Spectroscopy (EDS), X-Ray Diffraction (XRD), UV–Vis Spectroscopy, Zeta Potential, and Dynamic Light Scattering (DLS). Fourier Transform Infrared Spectrometer (FTIR), and X-ray Photoelectron Spectroscopy (XPS) show that nanoparticles are stabilized by extract molecules. A growth kinetics study was performed using the Gompertz model for microorganisms exposed to nanomaterials. The results indicate that AgNPs and Au@AgNPs affect the lag phase and growth rate of Escherichia coli and Candida albicans in a dose-dependent manner, with a better response for Au@AgNPs
Original languageAmerican English
Pages (from-to)1-19
Number of pages19
JournalNanoscale Research Letters
Volume16
Issue number118
DOIs
StatePublished - 22 Jul 2021

Fingerprint

Dive into the research topics of 'Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent'. Together they form a unique fingerprint.

Cite this