TY - JOUR
T1 - Characterisation of chemical bath deposition PbS nanofilms using polyethyleneimine, triethanolamine and ammonium nitrate as complexing agents
AU - Contreras-Rascón, J. I.
AU - Díaz-Reyes, J.
AU - Luna-Suárez, S.
AU - Carrillo-Torres, R. C.
AU - Sánchez-Zeferino, R.
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/12/31
Y1 - 2019/12/31
N2 - This work presents the structural characterisation of PbS nanofilms deposited by the chemical bath deposition technique at 70±2 °C using Polyethyleneimine, Triethanolamine and Ammonium nitrate as complexing agents, which allow a controlled and constant ion by ion reaction in aqueous medium whose chemical bath reactions take place in basic solutions with typical pH values 9–12, distinguishing the complexes obtained by their thermodynamic stability and kinetic stability. The PbS fundamental stretching frequencies were determined by Fourier transform infrared spectroscopy. X-ray photoelectron spectroscopy gives the relative atomic composition and identification of the most intense photoelectron transitions S2p (164 eV) and Pb4f 7/2 (137.34 eV) for the PbS-Nitrate film, which are associated with the Pb (II) oxidation state. The shift to higher binding energies, Pb4f7/2 (139.01 eV) for PbS-Polyethyleneimine and PbS-Triethanolamine show the presence of PbO2 with oxidation state Pb (IV). X-ray diffraction analysis and Raman spectroscopy reveal that PbS deposited nanofilms had pure cubic galena crystalline phase when ammonium nitrate was used as complexing agent, with the Polyethyleneimine complexing agent, the formation of cubic PbS in cubic phase with monoclinic Lanarkite Pb2(SO4)2 traces were observed. Finally, using Triethanolamine as complexing agent, cubic phase PbS with orthorhombic Anglesite and lead oxide (x∼1.57) traces were found. The surface morphology of the samples was obtained by High Resolution Transmission Electron Microscopy. The thin films show three direct band gaps, around 0.77–0.78 and 0.84–0.88 eV belonged to the mid-trap state caused by –Pb dangling bond and S+2 levels and the band gap energy at 0.91–1.10 eV was attributed to the quantum confinement associated to grain size, which were obtained by transmittance.
AB - This work presents the structural characterisation of PbS nanofilms deposited by the chemical bath deposition technique at 70±2 °C using Polyethyleneimine, Triethanolamine and Ammonium nitrate as complexing agents, which allow a controlled and constant ion by ion reaction in aqueous medium whose chemical bath reactions take place in basic solutions with typical pH values 9–12, distinguishing the complexes obtained by their thermodynamic stability and kinetic stability. The PbS fundamental stretching frequencies were determined by Fourier transform infrared spectroscopy. X-ray photoelectron spectroscopy gives the relative atomic composition and identification of the most intense photoelectron transitions S2p (164 eV) and Pb4f 7/2 (137.34 eV) for the PbS-Nitrate film, which are associated with the Pb (II) oxidation state. The shift to higher binding energies, Pb4f7/2 (139.01 eV) for PbS-Polyethyleneimine and PbS-Triethanolamine show the presence of PbO2 with oxidation state Pb (IV). X-ray diffraction analysis and Raman spectroscopy reveal that PbS deposited nanofilms had pure cubic galena crystalline phase when ammonium nitrate was used as complexing agent, with the Polyethyleneimine complexing agent, the formation of cubic PbS in cubic phase with monoclinic Lanarkite Pb2(SO4)2 traces were observed. Finally, using Triethanolamine as complexing agent, cubic phase PbS with orthorhombic Anglesite and lead oxide (x∼1.57) traces were found. The surface morphology of the samples was obtained by High Resolution Transmission Electron Microscopy. The thin films show three direct band gaps, around 0.77–0.78 and 0.84–0.88 eV belonged to the mid-trap state caused by –Pb dangling bond and S+2 levels and the band gap energy at 0.91–1.10 eV was attributed to the quantum confinement associated to grain size, which were obtained by transmittance.
KW - Chemical bath deposition
KW - Complexing agents
KW - High-resolution transmission electron microscopy
KW - Lead sulphide
KW - Raman scattering
KW - Thin films
KW - X-ray diffraction
KW - X-ray photoelectron spectroscopy
UR - http://www.scopus.com/inward/record.url?scp=85073756167&partnerID=8YFLogxK
U2 - 10.1016/j.tsf.2019.137609
DO - 10.1016/j.tsf.2019.137609
M3 - Artículo
SN - 0040-6090
VL - 692
JO - Thin Solid Films
JF - Thin Solid Films
M1 - 137609
ER -