Electroconductive nanocomposite hydrogel for pulsatile drug release

C. J. Pérez-Martínez, Sergio Daniel Morales Chávez, T. Del Castillo-Castro, Tania Ernestina Lara Ceniceros, M. M. Castillo-Ortega, D. E. Rodríguez-Félix, Juan Carlos Gálvez Ruiz

Research output: Contribution to journalArticlepeer-review

55 Scopus citations


© 2015 Elsevier B.V. All rights reserved. Polyacrylamide (PAAm) hydrogel containing nanofibers of polyaniline (PANI) has been prepared in order to evaluate it as electric stimuli-responsive material. Amoxicillin was loaded onto chemically synthesized PANI nanofibers of large-aspect-ratio. Composite hydrogel was obtained by the in situ incorporation of amoxicillin-loaded PANI during polymerization and reticulation of acrylamide. TEM images of cross sections of PAAm/amoxicillin-loaded PANI composite revealed a continuous 3D nanofiber network of PANI supported by the hydrogel matrix. The antibiotic molecules were accurately released (or sustained) from composite hydrogel in response to application (or removal) of cathodic electrical stimulation. In vitro cytotoxicity evaluation of composite hydrogel extract on mouse subcutaneous connective tissue has shown cell viability higher than 80%. The tuning release profile and minimal toxicity of the material evidenced its potential for electrically controlled drug delivery applications such as implantable devices and transdermal drug delivery systems.
Original languageAmerican English
Pages (from-to)12-17
Number of pages6
JournalReactive and Functional Polymers
StatePublished - 1 Mar 2016

Bibliographical note

Cited By :15

Export Date: 23 April 2019


Correspondence Address: Del Castillo-Castro, T.; Departamento de Investigación en Polímeros y Materiales, Universidad de SonoraMexico; email: terecat@polimeros.uson.mx

Funding details: Consejo Nacional de Ciencia y Tecnología, 2012-N°180280

Funding text 1: This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico (Grant Ciencia Básica 2012-N°180280 ). C. J. Pérez-Martínez and Sergio Daniel Morales Chávez acknowledge CONACYT for the scholarship during this study.

References: Rivero, R.E., Molina, M.A., Rivarola, C.R., Barbero, C.A., (2014) Sensors Actuators B, 190, pp. 270-278; Dispenza, C., Fiandaca, G., Lo Presti, C., Piazza, S., Spadaro, G., (2007) Radiat. Phys. Chem., 76, pp. 1371-1375; Verma, P.K., Sardar, P.S., Ghosh, S., Biswas, M., (2009) Polym. Compos., 30, pp. 490-496; Owino, J.H., Arotiba, O.A., Baker, P.G., Guiseppi-Elie, A., Iwuoha, E.I., (2008) React. Funct. Polym., 68, pp. 1239-1244; Wang, Y., Yang, X., Qiu, L., Li, D., (2013) Energy Environ. Sci., 6, pp. 477-481; Kotanen, C.N., Tlili, C., Guiseppi-Elie, A., (2013) Talanta, 103, pp. 228-235; Brahima, S., Narinesingha, D., Guiseppi-Elie, A., (2002) Biosens. Bioelectron., 17, pp. 53-59; Zhang, L., Li, Y., Li, L., Guo, B., Ma, P.X., (2014) React. Funct. Polym., 82, pp. 81-88; Kotanen, C.N., Wilson, A.N., Dong, C., Dinu, C.Z., Justin, G.A., Guiseppi-Elie, A., (2013) Biomaterials, 34, pp. 6318-6327; Chansai, P., Sirivat, A., Niamlang, S., Chotpattananont, D., Viravaidya-Pasuwat, K., (2009) Int. J. Pharm., 381, pp. 25-33; Tsai, T.S., Pillay, V., Choonara, Y.E., Du Toit, L.C., Modi, G., Naidoo, D., Kumar, P., (2011) Polymers, 3, pp. 150-172; Guiseppi-Elie, A., (2010) Biomaterials, 31, pp. 2701-2716; Sharma, K., Kaith, B.S., Kumar, V., Kalia, S., Kumar, V., Swart, H.C., (2014) Geoderma, 232-234, pp. 45-55; Low, L.M., Seetharaman, S., He, K.Q., Madou, M.J., (2000) Sensors Actuators B, 67, pp. 149-160; Niamlang, S., Sirivat, A., (2009) Int. J. Pharm., 371, pp. 126-133; Lira, L.M., De Torresi, S.I., (2008) Sensors Actuators B, 130, pp. 638-644; Ge, J., Neofytou, E., Cahill, T.J., Beygui, R.E., Zare, R.N., (2012) ACS Nano, 6, pp. 227-233; Pérez, C.J., Del Castillo, T., Castillo, M.M., Rodríguez, D.E., Herrera, P.J., Ovando, V.M., (2013) Synth. Met., 184, pp. 41-47; Ivanova, V.T., Katrukha, G.S., Timofeeva, A.V., Ilyna, M.V., Kurochkina, Y.E., Baratova, L.A., Sapurina, I.Y., Ivanov, V.F., (2011) J. Phys. Conf. Ser., 291, p. 012004; Javadian, H., (2014) J. Ind. Eng. Chem., 20, pp. 4233-4241; Karthik, R., Meenakshi, S., (2015) Chem. Eng. J., 263, pp. 168-177; Debnath, S., Ballav, N., Maity, A., Pillay, K., (2015) Int. J. Biol. Macromol., 72, pp. 732-739; Debnath, S., Ballav, N., Maity, A., Pillay, K., (2015) Int. J. Biol. Macromol., 75, pp. 199-209; Nath, B.C., Gogoi, B., Boruah, M., Sharma, S., Khannam, M., Ahmed, G.A., Dolui, S.K., (2014) Electrochim. Acta, 146, pp. 106-111; Dai, T., Qing, X., Wang, J., Shen, C., Lu, Y., (2010) Compos. Sci. Technol., 70, pp. 498-503; Zhao, Y.X., Ren, K.F., Sun, Y.X., Li, Z.J., Ji, J., (2014) RSC Adv., 4, pp. 24511-24517; Słoniewska, A., Pałys, B., (2014) Electrochim. Acta, 126, pp. 90-97; Kwon, I.C., Bae, Y.H., Kim, S.W., Control, J., (1994) Release, 30, pp. 155-159; Sutani, K., Kaetsu, I., Uchida, K., (2001) Radiat. Phys. Chem., 61, pp. 49-54; Murdan, S., Control, J., (2003) Release, 92, pp. 1-17; Indermun, S., Choonara, Y.E., Kumar, P., Du Toit, L.C., Modi, G., Luttge, R., Pillay, V., (2014) Int. J. Pharm., 462, pp. 52-65; Derakhsheshpoor, R., Homayoonfal, M., Akbari, A., Reza, M.J., (2013) J. Environ. Health Sci. Eng., 11, p. 9; Jeon, G., Yang, S.Y., Byun, J., Kim, J.K., (2011) Nano Lett., 11, pp. 1284-1288; Ricka, J., Tanaka, T., (1984) Macromolecules, 17, pp. 2916-2921; Yang, Y., Engberts, J.B.F.N., (2000) Colloids Surf. A, 169, pp. 85-94; Takahashi, S.H., Lira, L.M., De Torresi, S.I.C., (2012) J. Biomater. Bionanotechnol., 3, pp. 262-268; Siepmann, J., Peppas, N.A., (2001) Adv. Drug Deliv. Rev., 48, pp. 139-157; Bus, J.S., Popp, J.A., (1987) Food Chem. Toxicol., 25, pp. 619-626; Dispenza, C., Sabatino, M.A., Niconov, A., Chmielewska, D., Spadaro, G., (2012) Radiat. Phys. Chem., 81, pp. 1456-1459; Mattioli, M., Giavaresi, G., Biagini, G., Virgili, L., Giacomini, M., Fini, M., Giantomassi, F., Giardino, R., (2003) Int. J. Artif. Organs, 26, pp. 1077-1085; Bidez, P.R., Li, S., MacDiarmid, A.G., Venancio, E.C., Wei, Y., Lelkes, P.I., (2006) J. Biomater. Sci. Polym. Ed., 17, pp. 199-212; Qazi, T.H., Rai, R., Boccaccini, A.R., (2014) Biomaterials, 35, pp. 9068-9086


  • Electrically controlled drug release
  • Electroconductive hydrogels
  • Electroconductive polymer
  • Acrylic monomers
  • Aspect ratio
  • Collagen
  • Conducting polymers
  • Controlled drug delivery
  • Drug products
  • Electric conductivity
  • Implants (surgical)
  • Musculoskeletal system
  • Nanofibers
  • Polyaniline
  • Composite hydrogels
  • Controlled drug release
  • Drug delivery applications
  • Electrical stimulations
  • Electroconductive
  • Electroconductive polymers
  • Nanocomposite hydrogels
  • Transdermal drug delivery systems
  • Hydrogels


Dive into the research topics of 'Electroconductive nanocomposite hydrogel for pulsatile drug release'. Together they form a unique fingerprint.

Cite this