Extracellular Vesicles and Their Zeta Potential as Future Markers Associated with Nutrition and Molecular Biomarkers in Breast Cancer

Herminia Mendivil-Alvarado, Ana Teresa Limon-Miro, Elizabeth Carvajal-Millan, Jaime Lizardi-Mendoza, Araceli Mercado-Lara, Carlos D. Coronado-Alvarado, María L. Rascón-Durán, Iván Anduro-Corona, Daniel Talamás-Lara, Antonio Rascón-Careaga, Humberto Astiazarán-García*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

A nutritional intervention promotes the loss of body and visceral fat while maintaining muscle mass in breast cancer patients. Extracellular vesicles (EVs) and their characteristics can be potential biomarkers of disease. Here, we explore the changes in the Zeta potential of EVs; the content of miRNA-30, miRNA-145, and miRNA-155; and their association with body composition and biomarkers of metabolic risk in breast cancer patients, before and 6 months after a nutritional intervention. Clinicopathological data (HER2neu, estrogen receptor, and Ki67), anthropometric and body composition data, and plasma samples were available from a previous study. Plasma EVs were isolated and characterized in 16 patients. The expression of miRNA-30, miRNA-145, and miRNA-155 was analyzed. The Zeta potential was associated with HER2neu (β = 2.1; p = 0.00), Ki67 (β = −1.39; p = 0.007), estrogen positive (β = 1.57; p = 0.01), weight (β = −0.09; p = 0.00), and visceral fat (β = 0.004; p = 0.00). miRNA-30 was associated with LDL (β = −0.012; p = 0.01) and HDL (β = −0.02; p = 0.05). miRNA-155 was associated with visceral fat (β = −0.0007; p = 0.05) and Ki67 (β = −0.47; p = 0.04). Our results reveal significant associations between the expression of miRNA-30 and miRNA-155 and the Zeta potential of the EVs with biomarkers of metabolic risk and disease prognosis in women with breast cancer; particularly, the Zeta potential of EVs can be a new biomarker sensitive to changes in the nutritional status and breast cancer progression.

Original languageEnglish
Article number6810
JournalInternational Journal of Molecular Sciences
Volume24
Issue number7
DOIs
StatePublished - Apr 2023

Bibliographical note

Publisher Copyright:
© 2023 by the authors.

Keywords

  • exosomes
  • extracellular communication
  • microvesicles
  • nutritional status

Fingerprint

Dive into the research topics of 'Extracellular Vesicles and Their Zeta Potential as Future Markers Associated with Nutrition and Molecular Biomarkers in Breast Cancer'. Together they form a unique fingerprint.

Cite this