TY - JOUR
T1 - Mechanical, Barrier and Antioxidant Properties of Chitosan Films Incorporating Cinnamaldehyde
AU - López-Mata, Marco A.
AU - Ruiz-Cruz, Saúl
AU - de Jesús Ornelas-Paz, José
AU - Del Toro-Sánchez, Carmen Lizette
AU - Márquez-Ríos, Enrique
AU - Silva-Beltrán, Norma P.
AU - Cira-Chávez, Luis A.
AU - Burruel-Ibarra, Silvia E.
N1 - Publisher Copyright:
© 2017, Springer Science+Business Media New York.
PY - 2018/2/1
Y1 - 2018/2/1
N2 - Chitosan films (CF) [1 and 2% w/v] alone and with cinnamaldehyde (CNE) [0.25, 0.5 and 1% v/v] were prepared using an emulsion method, and the obtained films were characterized in terms of water vapor permeability (WVP), water solubility and optical, mechanical and antioxidant properties. The incorporation of CNE at 1% (v/v) significantly decreased the water solubility of the film by approximately 4% for the 1 and 2% CF films, whereas the WVP increased (2.5–3.5 times). The incorporation of CNE (0.25 and 0.5%) into 2% CF significantly increased the tensile strength (TS) (62 and 34%, respectively) and the percent elongation (%E) values, 26, 30 and 52% for CF that contained 0.25, 0.5 and 1% CNE, respectively. The largest value of the elasticity modulus (EM) was observed for 2% CF with 0.25% CNE. All films exhibited a yellow appearance (b*), but the CNE content had a marked impact on the coloration of the films. The CNE recoveries of the CF films (1 and 2%) with 1% of CNE were high (43 and 67%). The antioxidant activities indicated that the incorporation of 1% CNE into CF films (1 and 2%) increased the antioxidant activity. The protective effects of the films with and without CNE on erythrocytes were very strong (36–72% hemolysis inhibition). These results suggest there are potential applications for CF-CNE films as active packaging for the preservation of food products.
AB - Chitosan films (CF) [1 and 2% w/v] alone and with cinnamaldehyde (CNE) [0.25, 0.5 and 1% v/v] were prepared using an emulsion method, and the obtained films were characterized in terms of water vapor permeability (WVP), water solubility and optical, mechanical and antioxidant properties. The incorporation of CNE at 1% (v/v) significantly decreased the water solubility of the film by approximately 4% for the 1 and 2% CF films, whereas the WVP increased (2.5–3.5 times). The incorporation of CNE (0.25 and 0.5%) into 2% CF significantly increased the tensile strength (TS) (62 and 34%, respectively) and the percent elongation (%E) values, 26, 30 and 52% for CF that contained 0.25, 0.5 and 1% CNE, respectively. The largest value of the elasticity modulus (EM) was observed for 2% CF with 0.25% CNE. All films exhibited a yellow appearance (b*), but the CNE content had a marked impact on the coloration of the films. The CNE recoveries of the CF films (1 and 2%) with 1% of CNE were high (43 and 67%). The antioxidant activities indicated that the incorporation of 1% CNE into CF films (1 and 2%) increased the antioxidant activity. The protective effects of the films with and without CNE on erythrocytes were very strong (36–72% hemolysis inhibition). These results suggest there are potential applications for CF-CNE films as active packaging for the preservation of food products.
KW - Antioxidant
KW - Chitosan film
KW - Cinnamaldehyde
KW - Hemolysis
KW - Solubility
UR - http://www.scopus.com/inward/record.url?scp=85012867603&partnerID=8YFLogxK
U2 - 10.1007/s10924-017-0961-1
DO - 10.1007/s10924-017-0961-1
M3 - Artículo
AN - SCOPUS:85012867603
SN - 1566-2543
VL - 26
SP - 452
EP - 461
JO - Journal of Polymers and the Environment
JF - Journal of Polymers and the Environment
IS - 2
ER -