TY - JOUR
T1 - Minimal graphs for contractible and dismantlable properties
AU - Dochtermann, Anton
AU - Espinoza, Jesús F.
AU - Frías-Armenta, Martín Eduardo
AU - Hernández, Héctor A.
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/10
Y1 - 2023/10
N2 - The notion of a contractible transformation on a graph was introduced by Ivashchenko as a means to study molecular spaces arising from digital topology and computer image analysis, and more recently has been applied to topological data analysis. Contractible transformations involve a list of four elementary moves that can be performed on the vertices and edges of a graph, and it has been shown by Chen, Yau, and Yeh that these moves preserve the simple homotopy type of the underlying clique complex. A graph is said to be I-contractible if one can reduce it to a single isolated vertex via a sequence of contractible transformations. Inspired by the notions of collapsible and non-evasive simplicial complexes, in this paper we study certain subclasses of I-contractible graphs where one can collapse to a vertex using only a subset of these moves. Our main results involve constructions of minimal examples of graphs for which the resulting classes differ. We also relate these classes of graphs to the notion of k-dismantlable graphs and k-collapsible complexes, which also leads to a minimal counterexample to an erroneous claim of Ivashchenko from the literature. We end with some open questions.
AB - The notion of a contractible transformation on a graph was introduced by Ivashchenko as a means to study molecular spaces arising from digital topology and computer image analysis, and more recently has been applied to topological data analysis. Contractible transformations involve a list of four elementary moves that can be performed on the vertices and edges of a graph, and it has been shown by Chen, Yau, and Yeh that these moves preserve the simple homotopy type of the underlying clique complex. A graph is said to be I-contractible if one can reduce it to a single isolated vertex via a sequence of contractible transformations. Inspired by the notions of collapsible and non-evasive simplicial complexes, in this paper we study certain subclasses of I-contractible graphs where one can collapse to a vertex using only a subset of these moves. Our main results involve constructions of minimal examples of graphs for which the resulting classes differ. We also relate these classes of graphs to the notion of k-dismantlable graphs and k-collapsible complexes, which also leads to a minimal counterexample to an erroneous claim of Ivashchenko from the literature. We end with some open questions.
KW - Contractible graph
KW - Dismantlable graph
KW - Elementary collapse
KW - Graph homotopy
KW - Simple homotopy
UR - http://www.scopus.com/inward/record.url?scp=85161685865&partnerID=8YFLogxK
U2 - 10.1016/j.disc.2023.113516
DO - 10.1016/j.disc.2023.113516
M3 - Artículo
AN - SCOPUS:85161685865
SN - 0012-365X
VL - 346
JO - Discrete Mathematics
JF - Discrete Mathematics
IS - 10
M1 - 113516
ER -