TY - JOUR
T1 - Molecular dynamics and DFT study of 38-atom coinage metal clusters
AU - Sanders-Gutierrez, Oscar Alan
AU - Luna-Valenzuela, Analila
AU - Posada-Borbón, Alvaro
AU - Christian Schön, J.
AU - Posada-Amarillas, Alvaro
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2022/1
Y1 - 2022/1
N2 - The thermal behavior of 38-atom mono-, bi-, and trimetallic clusters consisting of Cu, Ag, and Au atoms, is analyzed employing molecular dynamics simulations and DFT calculations for selected cluster compositions. Low-energy structures were singled out to perform NVT molecular dynamics simulations at several temperatures, using the Andersen thermostat for temperature control. The caloric curve is used to estimate the melting temperature and the specific heat. The pair distribution function g(r) of the solid and liquid-phase clusters is examined at different temperatures. When comparing the estimated melting points (Tm) among the monatomic clusters, the order becomes TmCu38>TmAg38>TmAu38. For bimetallic clusters, an increase of Tm is observed for Cu-Au compared to their monatomic counterparts, while the opposite occurs for Cu-Ag clusters. For trimetallic clusters, two low-energy isomers of the Cu36Ag1Au1 cluster are investigated. In this case, Tm is estimated to be 475 K, for the two isomers with the lowest-energy and second-to-lowest energy, respectively. For all the clusters studied, the pair distribution function g(r) shows that the first peak position is not shifted as an effect of temperature and its maximum value varies with composition, while the second peak essentially vanishes upon melting. The common-neighbor analysis (CNA) technique is used to analyze the local structural changes for the trimetallic clusters, again demonstrating a clear structural change upon melting. The HOMO-LUMO energy gap indicates that the trimetallic isomers' behavior is metallic, while the average binding energy show these clusters' energetic stability to be similar.
AB - The thermal behavior of 38-atom mono-, bi-, and trimetallic clusters consisting of Cu, Ag, and Au atoms, is analyzed employing molecular dynamics simulations and DFT calculations for selected cluster compositions. Low-energy structures were singled out to perform NVT molecular dynamics simulations at several temperatures, using the Andersen thermostat for temperature control. The caloric curve is used to estimate the melting temperature and the specific heat. The pair distribution function g(r) of the solid and liquid-phase clusters is examined at different temperatures. When comparing the estimated melting points (Tm) among the monatomic clusters, the order becomes TmCu38>TmAg38>TmAu38. For bimetallic clusters, an increase of Tm is observed for Cu-Au compared to their monatomic counterparts, while the opposite occurs for Cu-Ag clusters. For trimetallic clusters, two low-energy isomers of the Cu36Ag1Au1 cluster are investigated. In this case, Tm is estimated to be 475 K, for the two isomers with the lowest-energy and second-to-lowest energy, respectively. For all the clusters studied, the pair distribution function g(r) shows that the first peak position is not shifted as an effect of temperature and its maximum value varies with composition, while the second peak essentially vanishes upon melting. The common-neighbor analysis (CNA) technique is used to analyze the local structural changes for the trimetallic clusters, again demonstrating a clear structural change upon melting. The HOMO-LUMO energy gap indicates that the trimetallic isomers' behavior is metallic, while the average binding energy show these clusters' energetic stability to be similar.
KW - Density functional theory
KW - Melting temperature
KW - Metal clusters
KW - Molecular dynamics
UR - http://www.scopus.com/inward/record.url?scp=85115935704&partnerID=8YFLogxK
U2 - 10.1016/j.commatsci.2021.110908
DO - 10.1016/j.commatsci.2021.110908
M3 - Artículo
AN - SCOPUS:85115935704
SN - 0927-0256
VL - 201
JO - Computational Materials Science
JF - Computational Materials Science
M1 - 110908
ER -