Monocyte (THP-1) Response to Silver Nanoparticles Synthesized with Rumex hymenosepalus Root Extract

Francisco Javier Alvarez-Cirerol, José Manuel Galván-Moroyoqui*, Ericka Rodríguez-León, María del Carmen Candia Plata, César Rodríguez-Beas, Luis Fernando López-Soto, Blanca Esthela Rodríguez-Vázquez, José Bustos-Arriaga, Adriana Soto-Guzmán, Eduardo Larios-Rodríguez, Juan M. Martínez-Soto, Aaron Martinez-Higuera, Ramón A. Iñiguez-Palomares*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The study, synthesis, and application of nanomaterials in medicine have grown exponentially in recent years. An example of this is the understanding of how nanomaterials activate or regulate the immune system, particularly macrophages. In this work, nanoparticles were synthesized using Rumex hymenosepalus as a reducing agent (AgRhNPs). According to thermogravimetric analysis, the metal content of nanoparticles is 55.5% by weight. The size of the particles ranges from 5–26 nm, with an average of 11 nm, and they possess an fcc crystalline structure. The presence of extract molecules on the nanomaterial was confirmed by UV-Vis and FTIR. It was found by UPLC-qTOF that the most abundant compounds in Rh extract are flavonols, flavones, isoflavones, chalcones, and anthocyanidins. The viability and apoptosis of the THP-1 cell line were evaluated for AgRhNPs, commercial nanoparticles (AgCNPs), and Rh extract. The results indicate a minimal cytotoxic and apoptotic effect at a concentration of 12.5 μg/mL for both nanoparticles and 25 μg/mL for Rh extract. The interaction of the THP-1 cell line and treatments was used to evaluate the polarization of monocyte subsets in conjunction with an evaluation of CCR2, Tie-2, and Arg-1 expression. The AgRhNPs nanoparticles and Rh extract neither exhibited cytotoxicity in the THP-1 monocyte cell line. Additionally, the treatments mentioned above exhibited anti-inflammatory effects by maintaining the classical monocyte phenotype CD14++CD16, reducing pro-inflammatory interleukin IL-6 production, and increasing IL-4 production.

Original languageEnglish
Article number106
JournalNanomaterials
Volume14
Issue number1
DOIs
StatePublished - Jan 2024

Bibliographical note

Publisher Copyright:
© 2024 by the authors.

Keywords

  • Rumex hymenosepalus
  • monocytes
  • silver nanoparticles

Fingerprint

Dive into the research topics of 'Monocyte (THP-1) Response to Silver Nanoparticles Synthesized with Rumex hymenosepalus Root Extract'. Together they form a unique fingerprint.

Cite this