Nanocomposite Hydrogels Based on Poly(vinyl alcohol) and Carbon Nanotubes for NIR-Light Triggered Drug Delivery

Karla F. García Verdugo, Brianda M. Salazar Salas, Lerma Hanaiy Chan Chan, Dora E. Rodríguez Félix, Jesús M. Quiroz Castillo, Teresa del Castillo Castro*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Photothermal nanocomposite hydrogels are promising materials for remotely triggering drug delivery by near-infrared (NIR) radiation stimuli. In this work, a novel hydrogel based on poly(vinyl alcohol), poly(vinyl methyl ether-alt-maleic acid), poly(vinyl methyl ether), and functionalized multiwalled carbon nanotubes (MWCNT-f) was prepared by the freeze/thaw method. A comparative characterization of materials (with and without MWCNT-f) was carried out by infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, mechanical assays, swelling kinetics measurements, and photothermal analysis under NIR irradiation. Hydrophilic chemotherapeutic 5-fluorouracil (5-FU) and hydrophobic ibuprofen drugs were independently loaded into hydrogels, and the drug release profiles were obtained under passive and NIR-irradiation conditions. The concentration-dependent cytotoxicity of materials was studied in vitro using noncancerous cells and cancer cells. Notable changes in the microstructure and physicochemical properties of hydrogels were observed by adding a low content (0.2 wt %) of MWCNT-f. The cumulative release amounts of 5-FU and ibuprofen from the hydrogel containing MWCNT-f were significantly increased by 21 and 39%, respectively, through the application of short-term NIR irradiation pulses. Appropriate concentrations of the nanocomposite hydrogel loaded with 5-FU produced cytotoxicity in cancer cells without affecting noncancerous cells. The overall properties of the MWCNT-f-containing hydrogel and its photothermal behavior make it an attractive material to promote the release of hydrophilic and hydrophobic drugs, depending on the treatment requirements.

Original languageEnglish
Pages (from-to)11860-11869
Number of pages10
JournalACS Omega
Volume9
Issue number10
DOIs
StatePublished - 12 Mar 2024

Bibliographical note

Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.

Fingerprint

Dive into the research topics of 'Nanocomposite Hydrogels Based on Poly(vinyl alcohol) and Carbon Nanotubes for NIR-Light Triggered Drug Delivery'. Together they form a unique fingerprint.

Cite this