TY - JOUR
T1 - Nanocomposite Hydrogels Based on Poly(vinyl alcohol) and Carbon Nanotubes for NIR-Light Triggered Drug Delivery
AU - García Verdugo, Karla F.
AU - Salazar Salas, Brianda M.
AU - Chan, Lerma Hanaiy Chan
AU - Rodríguez Félix, Dora E.
AU - Quiroz Castillo, Jesús M.
AU - del Castillo Castro, Teresa
N1 - Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.
PY - 2024/3/12
Y1 - 2024/3/12
N2 - Photothermal nanocomposite hydrogels are promising materials for remotely triggering drug delivery by near-infrared (NIR) radiation stimuli. In this work, a novel hydrogel based on poly(vinyl alcohol), poly(vinyl methyl ether-alt-maleic acid), poly(vinyl methyl ether), and functionalized multiwalled carbon nanotubes (MWCNT-f) was prepared by the freeze/thaw method. A comparative characterization of materials (with and without MWCNT-f) was carried out by infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, mechanical assays, swelling kinetics measurements, and photothermal analysis under NIR irradiation. Hydrophilic chemotherapeutic 5-fluorouracil (5-FU) and hydrophobic ibuprofen drugs were independently loaded into hydrogels, and the drug release profiles were obtained under passive and NIR-irradiation conditions. The concentration-dependent cytotoxicity of materials was studied in vitro using noncancerous cells and cancer cells. Notable changes in the microstructure and physicochemical properties of hydrogels were observed by adding a low content (0.2 wt %) of MWCNT-f. The cumulative release amounts of 5-FU and ibuprofen from the hydrogel containing MWCNT-f were significantly increased by 21 and 39%, respectively, through the application of short-term NIR irradiation pulses. Appropriate concentrations of the nanocomposite hydrogel loaded with 5-FU produced cytotoxicity in cancer cells without affecting noncancerous cells. The overall properties of the MWCNT-f-containing hydrogel and its photothermal behavior make it an attractive material to promote the release of hydrophilic and hydrophobic drugs, depending on the treatment requirements.
AB - Photothermal nanocomposite hydrogels are promising materials for remotely triggering drug delivery by near-infrared (NIR) radiation stimuli. In this work, a novel hydrogel based on poly(vinyl alcohol), poly(vinyl methyl ether-alt-maleic acid), poly(vinyl methyl ether), and functionalized multiwalled carbon nanotubes (MWCNT-f) was prepared by the freeze/thaw method. A comparative characterization of materials (with and without MWCNT-f) was carried out by infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, mechanical assays, swelling kinetics measurements, and photothermal analysis under NIR irradiation. Hydrophilic chemotherapeutic 5-fluorouracil (5-FU) and hydrophobic ibuprofen drugs were independently loaded into hydrogels, and the drug release profiles were obtained under passive and NIR-irradiation conditions. The concentration-dependent cytotoxicity of materials was studied in vitro using noncancerous cells and cancer cells. Notable changes in the microstructure and physicochemical properties of hydrogels were observed by adding a low content (0.2 wt %) of MWCNT-f. The cumulative release amounts of 5-FU and ibuprofen from the hydrogel containing MWCNT-f were significantly increased by 21 and 39%, respectively, through the application of short-term NIR irradiation pulses. Appropriate concentrations of the nanocomposite hydrogel loaded with 5-FU produced cytotoxicity in cancer cells without affecting noncancerous cells. The overall properties of the MWCNT-f-containing hydrogel and its photothermal behavior make it an attractive material to promote the release of hydrophilic and hydrophobic drugs, depending on the treatment requirements.
UR - http://www.scopus.com/inward/record.url?scp=85187547484&partnerID=8YFLogxK
U2 - 10.1021/acsomega.3c09609
DO - 10.1021/acsomega.3c09609
M3 - Artículo
C2 - 38496922
AN - SCOPUS:85187547484
SN - 2470-1343
VL - 9
SP - 11860
EP - 11869
JO - ACS Omega
JF - ACS Omega
IS - 10
ER -