PEGylated degradable composite nanoparticles based on mixtures of PEG-b-poly(γ-benzyl L-glutamate) and poly(γ-benzyl L-glutamate)

Ma Elisa Martínez-Barbosa, Sandrine Cammas-Marion, Laurent Bouteiller, Christine Vauthier, Gilles Ponchel

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

In the present work, the possibility to obtain PEGylated nanoparticles from two PBLG derivatives, PEG-b-poly(γ-benzyl L-glutamate), PBLG-PEG-60, and poly(γ-benzyl L-glutamate), PBLG-Bnz-50, by nanoprecipitation has been investigated. Particles were prepared not only from one polymer (PBLG-PEG-60 or PBLG-Bnz-50), but also from mixtures of two PBLG derivatives, PBLG-PEG-60 and PBLG-Bnz-50, in different ratios (90/10, 77/23, and 40/60 wt %). Because of the presence of PEG chains, hydrophilic particles were obtained, which was confirmed by ζ potential measurements (ζ from -13 mV and -21 mV) and by isothermal titration microcalorimetry (ITC). This last technique has shown no heat exchange when BSA was added to PEGylated nanoparticles. Further, complement activation has been evaluated by crossed immuno-electrophoresis demonstrating that the introduction of 77 wt % of PEGylated PBLG chains in the particles was enough to ensure a low complement activation activity. This effect was strongly correlated to the ζ potential of the particles, which decreased with an increase of PEG chains content. Interestingly, such properties are of interest for the preparation of degradable stealth nanocarriers. Moreover, it is suggested that the introduction of a reasonable amount (up to 20 wt %) of a second copolymer in the particle composition can be possible without modifying their stealth character. Moreover, the presence of this second copolymer would help to introduce a second functionality to the particles. © 2009 American Chemical Society.
Original languageAmerican English
Pages (from-to)1490-1496
Number of pages7
JournalBioconjugate Chemistry
DOIs
StatePublished - 1 Jan 2009

Fingerprint

Dive into the research topics of 'PEGylated degradable composite nanoparticles based on mixtures of PEG-b-poly(γ-benzyl L-glutamate) and poly(γ-benzyl L-glutamate)'. Together they form a unique fingerprint.

Cite this