TY - JOUR
T1 - Pressure influence on structural and optical behaviors of ZnTe thin films grown by PLD
AU - Ochoa-Estrella, F. J.
AU - Vera-Marquina, A.
AU - Mejia, I.
AU - Leal-Cruz, A. L.
AU - Quevedo-López, M.
N1 - Publisher Copyright:
© 2018, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2018/5/1
Y1 - 2018/5/1
N2 - In this work, ZnTe thin films were grown by pulsed laser deposition technique with the aim of study their structural and optical behaviors as function of deposition pressure and consider their potential application in optoelectronic devices. Hence, to obtain the stoichiometric ZnTe phase, the deposition temperature was considered as constant (286 °C) during growth process and deposition pressure was varied, as follow: 1, 20, 50, and 100 mTorr. After that, deposited films were characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and UV–Vis spectroscopy techniques. Characterization results reveals that deposited films correspond to stoichiometric, nanostructured, uniform and monophasic deposits of ZnTe with a strong preferential orientation in the (111) plane. It is noteworthy that thickness, grain size and crystal size of the films do not show a linear dependence on the range of deposition pressure. On the other hand, UV–Vis spectroscopy results indicate that band gap values of ZnTe films can be tuned in the range of 2.43–2.56 eV as function of deposition pressure. Lastly, it is consider that ZnTe thin films deposited at 20 mTorr present the best match between structural and optical characteristics for potential applications in development of optoelectronic devices.
AB - In this work, ZnTe thin films were grown by pulsed laser deposition technique with the aim of study their structural and optical behaviors as function of deposition pressure and consider their potential application in optoelectronic devices. Hence, to obtain the stoichiometric ZnTe phase, the deposition temperature was considered as constant (286 °C) during growth process and deposition pressure was varied, as follow: 1, 20, 50, and 100 mTorr. After that, deposited films were characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and UV–Vis spectroscopy techniques. Characterization results reveals that deposited films correspond to stoichiometric, nanostructured, uniform and monophasic deposits of ZnTe with a strong preferential orientation in the (111) plane. It is noteworthy that thickness, grain size and crystal size of the films do not show a linear dependence on the range of deposition pressure. On the other hand, UV–Vis spectroscopy results indicate that band gap values of ZnTe films can be tuned in the range of 2.43–2.56 eV as function of deposition pressure. Lastly, it is consider that ZnTe thin films deposited at 20 mTorr present the best match between structural and optical characteristics for potential applications in development of optoelectronic devices.
UR - http://www.scopus.com/inward/record.url?scp=85041905395&partnerID=8YFLogxK
U2 - 10.1007/s10854-018-8755-3
DO - 10.1007/s10854-018-8755-3
M3 - Artículo
AN - SCOPUS:85041905395
SN - 0957-4522
VL - 29
SP - 7629
EP - 7636
JO - Journal of Materials Science: Materials in Electronics
JF - Journal of Materials Science: Materials in Electronics
IS - 9
ER -