## Abstract

Original language | Spanish (Mexico) |
---|---|

Article number | 2304 |

Pages (from-to) | 1-6 |

Number of pages | 6 |

Journal | Latin American Journal Education |

Volume | 13 |

Issue number | 2 |

State | Published - 15 Feb 2019 |

## Access to Document

- Dialnet-RevisitingTheRefractionOfHumansAndAntsThroughDijks-7325394Final published version, 543 KBLicense: Unspecified

## Cite this

- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver

*Latin American Journal Education*,

*13*(2), 1-6. [2304].

**Revisiting the refraction of humans and ants through dijkstra´s algorithm**. In: Latin American Journal Education. 2019 ; Vol. 13, No. 2. pp. 1-6.

}

*Latin American Journal Education*, vol. 13, no. 2, 2304, pp. 1-6.

**Revisiting the refraction of humans and ants through dijkstra´s algorithm.** / Campos García, Julio Cesar; Gómez Aldama, Oscar Rubén ; López M, Marco A; Gómez, Viridiana ; Uriarte M, Mario H ; Castro-A., L.

Research output: Contribution to journal › Article › peer-review

TY - JOUR

T1 - Revisiting the refraction of humans and ants through dijkstra´s algorithm

AU - Campos García, Julio Cesar

AU - Gómez Aldama, Oscar Rubén

AU - López M, Marco A

AU - Gómez, Viridiana

AU - Uriarte M, Mario H

AU - Castro-A., L.

N1 - REFERENCES [1] Aboites, V. and Pisarchik. A., Revista Mexicana de Física E, Rev. Mex. E 53, 52-55 (2007). [2] J. Oettler, V.S. Schmid, N. Zankl, O. Rey, A. Dress, J. Heinze, Fermat's principle of least time predicts refraction of ant trails at substrate borders, PLOS ONE 8, e59739 (2013). [3] Dijkstra, E. W., A note on two problems in connexion with graphs, Numerische Mathematik Springer-Verlag New York, Inc. Secaucus 1, 269-271 (1959). [4] Dramski, M., Naukowe Z., A Comparison between Dijks algorithm and simplified ant colony optimization in navigation, Maritime University of Szczecin 29, 25-29 (2012). [5] Lee, J, Yang J, Int. J., Comput. Commun. 7, 482-493 (2012). [6] Magzhan, K., Jani H., International Journal of Scientific & Technology Research, 2, 99-104 (2013). [7] Yoon J., Blumer A., Lee K., Bioinformatics Applications Note 22, 3106-3108 (2006). [8] Orlin, J. B., Madduri, K., Subramani, M. W., Journal of Discrete Algorithms 8, 189-198 (2010). [9] Cickovski, T., Peake E., Pulido V.A., Narasimhan G., Computational Advances in Bio and Medical Sciences (ICCABS), INSPEC Accession Number: 15649637 (2015). [10] Wang Q., Zhang Z., Zhang Y., Deng, Y., Journal of Information & Computational Science 9, 1365-1371 (2012). [11] Bonnet E., et al., BMC Systems Biology 7, 1-16 (2013). [12] Coarasa, T. Z., Tamada, T., Lee E. J., Gonzalez R. F., The Company of Biologists 141, 2901-2911 (2014). [13] Almeida V. T., Güting R. H., The 21st Annual ACM Symposium on Applied Computing p. 58-62 (2006). [14] Schroedl S., Journal of Artificial Intelligence Research 23, 587-623 (2005). [15] Joshi T., Chen Y., Alexandrov N., Xu D., Bioinformatics Research and Applications 1, 335-350 (2006). [16] Sharma P., Planiya A., Shortest Path Finding of Wireless Optical Network using Dijkstra 3, 77-84 (2016). Julio C. Campos G. et al. Lat. Am. J. Phys. Educ. Vol. 13, No. 2, June 2019 2304-6 http://www.lajpe.org [17] Uchida, K., 2014 Ninth International Conference on Broadband Wireless Computing Communication and Applications, 371-376 (2014). [18] Azodolmolky S., et al., Computer Networks, 53, 926-944 (2009). [19] Vijayanand C., Kumar M. S., Venugopal K. R., Computer Communications 23, 1223-1234 (2000). [20] Huang S., Seshadri D., Dutta R., Global Telecommunications Conference, 2009, GLOBECOM 2009. IEEE, INSPEC North Texas University, USA 1-6 (2010). [21] Liu G., Ramaktishnan K. G., INFOCOM 2001, Twetieth Annual Joint Conference of the IEEE Computer and Communications Societies, Proceedings IEEE, 743-749 (2001). [22] Chow T. Y., Chudak F, French A.M., IEEE/ACM TRANSACTIONS ON NETWORKING 12, 539-548 (2004). [23] Zang H., Jue J. P., Mukherjee B., Optical Networks Magazine 3, 47-60 (2000). [24] T.R., Etherington, Curr. Landscape Ecol, Rep., 1, 40-53 (2016). [25] Choi Y, Um J-G, Park M-H., Finding least-cost paths across a continuous raster surface with discrete vector networks, Pukyong National University, Korea 41, 75–85, (2014). [26] Kovanen J, Sarjakoski T., Tilewise accumulated cost surface computation with graphics processing units.ACM Transactions on Spatial Algorithms and Systems 4, 271-298, (2015).

PY - 2019/2/15

Y1 - 2019/2/15

N2 - In this paper we revisit the study on the refraction of humans and ants, using graph theory to construct models of connected flat graph of both systems. Subsequently, the Dijkstra algorithm is implemented through a MATLAB code, with which the corresponding data matrices are obtained. These matrices provide the optimal time trajectories for each of the graphing models, in their different configurations. In the case of the human system, the prediction turned out to be of the same order as predicted by the Fermat Principle in that cited literature reference. In the case of ants, the predictions are quite coherent according to the elaborated models of graph, although these do not obey the original experimental arrangements.

AB - In this paper we revisit the study on the refraction of humans and ants, using graph theory to construct models of connected flat graph of both systems. Subsequently, the Dijkstra algorithm is implemented through a MATLAB code, with which the corresponding data matrices are obtained. These matrices provide the optimal time trajectories for each of the graphing models, in their different configurations. In the case of the human system, the prediction turned out to be of the same order as predicted by the Fermat Principle in that cited literature reference. In the case of ants, the predictions are quite coherent according to the elaborated models of graph, although these do not obey the original experimental arrangements.

KW - Refraction

KW - biological systems

KW - Algorithm

M3 - Artículo

VL - 13

SP - 1

EP - 6

JO - Latin American Journal Education

JF - Latin American Journal Education

SN - 1870-9095

IS - 2

M1 - 2304

ER -