Solid-State Neutron Detection Based on Methylammonium Lead Bromide Perovskite Single Crystals

Lidia El Bouanani, Sheila E. Keating, Carlos Avila-Avendano, Martin Gregorio Reyes-Banda, Maria Isabel Pintor-Monroy, Vidushi Singh, Bayron L. Murillo, Marissa Higgins, Manuel A. Quevedo-Lopez*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Perovskite-based semiconductors, such as methylammonium and cesium lead halides (MPbX3: M = CH3NH3+ or Cs+ X = I-, Br-, or Cl-), have attracted immense attention for several applications, including radiation detection, due to their excellent electronic and optical properties.1,2,3,4,5,6 In addition, the combination of perovskites with other materials enables unique device structures. For example, robust and reliable diodes result when combined with metal oxide semiconductors. This device can be used for detection of nonionizing and ionizing radiation. In this paper, we report a unique perovskite single-crystal-based neutron detector using a heterojunction diode based on single-crystal MAPbBr3 and gallium oxide (Ga2O3) thin film. The MAPbBr3/Ga2O3 diodes demonstrate a leakage current of ∼7 × 10-10 A/mm2, an on/off ratio of ∼102, an ideality factor of 1.41, and minimal hysteresis that enables alpha particle, gamma-ray, and neutron detection at a bias as low as (-5 V). Gamma discrimination is further improved by 85% by optimizing the thickness of the perovskite single crystal. The MAPbBr3/Ga2O3 diodes also demonstrate a neutron detection efficiency of ∼3.92% when combined with a 10B neutron conversion layer.

Original languageEnglish
Pages (from-to)28049-28056
Number of pages8
JournalACS Applied Materials and Interfaces
Volume13
Issue number24
DOIs
StatePublished - 23 Jun 2021

Bibliographical note

Publisher Copyright:
©

Keywords

  • CHNHPbBr
  • MAPbBr
  • alpha detection
  • gamma detection
  • methylammonium lead bromide
  • neutron detection
  • perovskite single crystal
  • radiation detection

Fingerprint

Dive into the research topics of 'Solid-State Neutron Detection Based on Methylammonium Lead Bromide Perovskite Single Crystals'. Together they form a unique fingerprint.

Cite this