TY - JOUR
T1 - Structure and refractive index of thin alumina films grown by atomic layer deposition
AU - Aguilar-Gama, M. Tulio
AU - Ramírez-Morales, Erik
AU - Montiel-González, Z.
AU - Mendoza-Galván, A.
AU - Sotelo-Lerma, Mérida
AU - Nair, P. K.
AU - Hu, Hailin
N1 - Publisher Copyright:
© 2014, Springer Science+Business Media New York.
PY - 2015/8/23
Y1 - 2015/8/23
N2 - Aluminum oxide (Al2O3) is a good dielectric material for optoelectronic applications. With technologies such as atomic layer deposition (ALD), homogeneous ultrathin films of Al2O3 can be obtained at moderate temperatures. In this work, Al2O3 thin films of thickness up to 310 nm were obtained by ALD at 150 and 175 °C with trimethylaluminum and H2O as precursors. The nitrogen purging pulses were kept short (1 or 2 s) to reach the growth rate of about 0.14 nm/cycle at 150 °C and 0.15 nm/cycle at 175 °C after 800 deposition cycles. The obtained films were amorphous and showed a good homogeneity over a 2 × 2 cm2 area confirmed by optical reflectance. X-ray photoelectron spectroscopy analysis on the surface of the ALD samples indicate that films deposited at 150 °C contained more carbon-related bonds, which probably arise from incomplete surface reaction or insufficient N2 purging time. Results of spectroscopic ellipsometry (SE) reveal that the refractive indices (n) of the ALD films are systematically lower than that of crystalline α-Al2O3 in the wavelength range, 240–850 nm. Higher deposition temperature increased slightly the n values, but at the same time it also increased the roughness of the film surface. A good match between the film thicknesses estimated by SE and from the cross-sectional scanning electron microscopy images of the same group of samples confirms the effectiveness of the SE modeling to study the homogeneity of the alumina films deposited by ALD on silicon substrates.
AB - Aluminum oxide (Al2O3) is a good dielectric material for optoelectronic applications. With technologies such as atomic layer deposition (ALD), homogeneous ultrathin films of Al2O3 can be obtained at moderate temperatures. In this work, Al2O3 thin films of thickness up to 310 nm were obtained by ALD at 150 and 175 °C with trimethylaluminum and H2O as precursors. The nitrogen purging pulses were kept short (1 or 2 s) to reach the growth rate of about 0.14 nm/cycle at 150 °C and 0.15 nm/cycle at 175 °C after 800 deposition cycles. The obtained films were amorphous and showed a good homogeneity over a 2 × 2 cm2 area confirmed by optical reflectance. X-ray photoelectron spectroscopy analysis on the surface of the ALD samples indicate that films deposited at 150 °C contained more carbon-related bonds, which probably arise from incomplete surface reaction or insufficient N2 purging time. Results of spectroscopic ellipsometry (SE) reveal that the refractive indices (n) of the ALD films are systematically lower than that of crystalline α-Al2O3 in the wavelength range, 240–850 nm. Higher deposition temperature increased slightly the n values, but at the same time it also increased the roughness of the film surface. A good match between the film thicknesses estimated by SE and from the cross-sectional scanning electron microscopy images of the same group of samples confirms the effectiveness of the SE modeling to study the homogeneity of the alumina films deposited by ALD on silicon substrates.
UR - http://www.scopus.com/inward/record.url?scp=84937526638&partnerID=8YFLogxK
U2 - 10.1007/s10854-014-2111-z
DO - 10.1007/s10854-014-2111-z
M3 - Artículo
SN - 0957-4522
VL - 26
SP - 5546
EP - 5552
JO - Journal of Materials Science: Materials in Electronics
JF - Journal of Materials Science: Materials in Electronics
IS - 8
ER -