Synthesis and Characterization of a Semiconductor Diodic Bilayer PbS/CdS Made by the Chemical Bath Deposition Technique

Abraham Encinas-Terán, Horacio A. Pineda-León, María R. Gómez-Colín*, Laura R. Márquez-Alvarez, Ramón Ochoa-Landín, Alejandro Apolinar-Iribe, Sandra L. Gastélum-Acuña, Temístocles Mendívil-Reynoso, Santos J. Castillo

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

In this work, we report a heterojunction formed by a PbS/CdS bilayer using the chemical bath deposition (CBD) technique because it is a relatively simple, fast, and low-cost technique; is permitted to obtain high-quality thin films (TFs); and also covers large areas. Some characterizations have been carried out to confirm the identity of the involved bilayer. For the cadmium sulfide (CdS) film, optical properties such as absorption, transmission, reflection, extinction coefficient, and refractive index were measured. Moreover, the bandgap was calculated, and morphology was obtained by scanning electron microscopy (SEM). Also, X-ray diffraction (XRD) and high-resolution transmission electron microscopy (TEM) were performed for the synthesis of CdS films. On the other hand, for the synthesis of lead sulfide (PbS) films, we performed TEM, energy-dispersive spectroscopy, and XRD. A surface morphological SEM image of the PbS film synthesized was also taken. The multiheterojunction PbS/CdS bilayer was characterized by the current-voltage (I-V) curve, and the behavior of the bilayer was evaluated under the conditions of darkness and controlled fixed lighting, detecting a very slight photosensitivity of the complete diodic device through those measurements. The calculated bandgap for the CdS TF was Eg = 2.55 eV, while after a chosen thermal annealing, the bandgap decreased to 2.38 eV. On the other hand, the PbS film presented a cubic structure.

Original languageEnglish
Pages (from-to)24321-24332
Number of pages12
JournalACS Omega
Volume9
Issue number23
DOIs
StatePublished - 11 Jun 2024

Bibliographical note

Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.

Fingerprint

Dive into the research topics of 'Synthesis and Characterization of a Semiconductor Diodic Bilayer PbS/CdS Made by the Chemical Bath Deposition Technique'. Together they form a unique fingerprint.

Cite this