TY - JOUR
T1 - 23- and 27-Membered Macrocyclic Diorganotin(IV) Bis-dithiocarbamates
T2 - Synthesis, Spectroscopic Characterization, DFT Calculations, and Physicochemical Analysis as Anion Receptors
AU - Vasquez-Ríos, María G.
AU - Reyes-Márquez, Viviana
AU - Höpfl, Herbert
AU - Torres-Huerta, Aaron
AU - Guerrero-Álvarez, Jorge
AU - Sánchez, Mario
AU - Hernández-Ahuactzi, Irán F.
AU - Ochoa-Lara, Karen
AU - Jiménez-Sánchez, Arturo
AU - Santillán, Rosa
N1 - Publisher Copyright:
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2016/7
Y1 - 2016/7
N2 - Four secondary diamines with aromatic spacer groups derived from α,α′-dibromo-p-xylene and 4,4′-bis(chloromethyl)-1,1′-biphenyl have been transformed into bis-dithiocarbamate ligands and each combined with dimethyl-, di-n-butyl-, and diphenyltin(IV) dichloride to yield a total of 12 mononuclear diorganotin(IV) bis-dithiocarbamate complexes with six-coordinate metal coordination geometries and either 23- or 27-membered macrocyclic structures. The products were fully characterized by IR and NMR (1H,13C,119Sn) spectroscopy and high-resolution ESI+-TOF mass spectrometry. A representative selection of the macrocyclic complexes was further examined by DFT computational studies and the relative binding energies of the cis and trans isomers of the different diorganotin complexes were calculated and compared. Additionally, four possible conformations of the trans isomers were analyzed. With the purpose of examining whether the complexes can be applied to the recognition of anions, five macrocycles were selected based on criteria that allowed the influence of the aromatic spacer group, the N substituent of the dithiocarbamate ligand, and the organic groups attached to the metal center on the recognition properties to be explored. Among the NMe4+X–salts (X–= F–, Cl–, Br–, I–, NO3–, HSO4–, and CH3COO–) examined, the diorganotin complexes were sensitive to fluoride and carboxylate anions.
AB - Four secondary diamines with aromatic spacer groups derived from α,α′-dibromo-p-xylene and 4,4′-bis(chloromethyl)-1,1′-biphenyl have been transformed into bis-dithiocarbamate ligands and each combined with dimethyl-, di-n-butyl-, and diphenyltin(IV) dichloride to yield a total of 12 mononuclear diorganotin(IV) bis-dithiocarbamate complexes with six-coordinate metal coordination geometries and either 23- or 27-membered macrocyclic structures. The products were fully characterized by IR and NMR (1H,13C,119Sn) spectroscopy and high-resolution ESI+-TOF mass spectrometry. A representative selection of the macrocyclic complexes was further examined by DFT computational studies and the relative binding energies of the cis and trans isomers of the different diorganotin complexes were calculated and compared. Additionally, four possible conformations of the trans isomers were analyzed. With the purpose of examining whether the complexes can be applied to the recognition of anions, five macrocycles were selected based on criteria that allowed the influence of the aromatic spacer group, the N substituent of the dithiocarbamate ligand, and the organic groups attached to the metal center on the recognition properties to be explored. Among the NMe4+X–salts (X–= F–, Cl–, Br–, I–, NO3–, HSO4–, and CH3COO–) examined, the diorganotin complexes were sensitive to fluoride and carboxylate anions.
KW - Anions
KW - Density functional calculations
KW - Host–guest systems
KW - Macrocyclic ligands
KW - Receptors
KW - Tin
UR - http://www.scopus.com/inward/record.url?scp=84977080698&partnerID=8YFLogxK
U2 - 10.1002/ejic.201600254
DO - 10.1002/ejic.201600254
M3 - Artículo
SN - 1434-1948
VL - 2016
SP - 3429
EP - 3440
JO - European Journal of Inorganic Chemistry
JF - European Journal of Inorganic Chemistry
IS - 21
ER -