A finite difference scheme for smooth solutions of the general Degasperis–Procesi equation

Jesus Noyola Rodriguez, Georgy Omel'yanov

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

© 2019 Wiley Periodicals, Inc. The general Degasperis–Procesi equation (gDP) describes the evolution of the water surface in a unidirectional shallow water approximation. We propose a finite-difference scheme for this equation that preserves some conservation and balance laws. In addition, the stability of the scheme and the convergence of numerical solutions to exact solutions for solitons are proved. Numerical experiments confirm the theoretical conclusions. For essentially nonintegrable versions of the gDP equation, it is shown that solitons and antisolitons collide almost elastically: they retain their shape after interaction, but a small “tail”, the so-called “radiation”, appears.
Idioma originalInglés estadounidense
Páginas (desde-hasta)887-905
Número de páginas19
PublicaciónNumerical Methods for Partial Differential Equations
DOI
EstadoPublicada - 1 jul. 2020

Huella

Profundice en los temas de investigación de 'A finite difference scheme for smooth solutions of the general Degasperis–Procesi equation'. En conjunto forman una huella única.

Citar esto