A finite difference scheme for smooth solutions of the general Degasperis–Procesi equation

Jesus Noyola Rodriguez, Georgy Omel'yanov*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)

Resumen

The general Degasperis–Procesi equation (gDP) describes the evolution of the water surface in a unidirectional shallow water approximation. We propose a finite-difference scheme for this equation that preserves some conservation and balance laws. In addition, the stability of the scheme and the convergence of numerical solutions to exact solutions for solitons are proved. Numerical experiments confirm the theoretical conclusions. For essentially nonintegrable versions of the gDP equation, it is shown that solitons and antisolitons collide almost elastically: they retain their shape after interaction, but a small “tail”, the so-called “radiation”, appears.

Idioma originalInglés
Páginas (desde-hasta)887-905
Número de páginas19
PublicaciónNumerical Methods for Partial Differential Equations
Volumen36
N.º4
DOI
EstadoPublicada - 1 jul. 2020

Nota bibliográfica

Publisher Copyright:
© 2019 Wiley Periodicals, Inc.

Huella

Profundice en los temas de investigación de 'A finite difference scheme for smooth solutions of the general Degasperis–Procesi equation'. En conjunto forman una huella única.

Citar esto