TY - JOUR
T1 - Adaptive mitochondrial response of the whiteleg shrimp Litopenaeus vannamei to environmental challenges and pathogens
AU - Rodriguez-Armenta, Chrystian
AU - Reyes-Zamora, Orlando
AU - De la Re-Vega, Enrique
AU - Sanchez-Paz, Arturo
AU - Mendoza-Cano, Fernando
AU - Mendez-Romero, Ofelia
AU - Gonzalez-Rios, Humberto
AU - Muhlia-Almazan, Adriana
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2021/7
Y1 - 2021/7
N2 - In most eukaryotic organisms, mitochondrial uncoupling mechanisms control ATP synthesis and reactive oxygen species production. One such mechanism is the permeability transition of the mitochondrial inner membrane. In mammals, ischemia–reperfusion events or viral diseases may induce ionic disturbances, such as calcium overload; this cation enters the mitochondria, thereby triggering the permeability transition. This phenomenon increases inner membrane permeability, affects transmembrane potential, promotes mitochondrial swelling, and induces apoptosis. Previous studies have found that the mitochondria of some crustaceans do not exhibit a calcium-regulated permeability transition. However, in the whiteleg shrimp Litopenaeus vannamei, contradictory evidence has prevented this phenomenon from being confirmed or rejected. Both the ability of L. vannamei mitochondria to take up large quantities of calcium through a putative mitochondrial calcium uniporter with conserved characteristics and permeability transition were investigated in this study by determining mitochondrial responses to cations overload. By measuring mitochondrial swelling and transmembrane potential, we investigated whether shrimp exposure to hypoxia-reoxygenation events or viral diseases may induce mitochondrial permeability transition. The results of this study demonstrate that shrimp mitochondria take up large quantities of calcium through a canonical mitochondrial calcium uniporter. Neither calcium nor other ions were observed to promote permeability transition. This phenomenon does not depend on the life cycle stage of shrimp, and it is not induced during hypoxia/reoxygenation events or in the presence of viral diseases. The absence of the permeability transition phenomenon and its adaptive meaning are discussed as a loss with biological advantages, possibly enabling organisms to survive under harsh environmental conditions.
AB - In most eukaryotic organisms, mitochondrial uncoupling mechanisms control ATP synthesis and reactive oxygen species production. One such mechanism is the permeability transition of the mitochondrial inner membrane. In mammals, ischemia–reperfusion events or viral diseases may induce ionic disturbances, such as calcium overload; this cation enters the mitochondria, thereby triggering the permeability transition. This phenomenon increases inner membrane permeability, affects transmembrane potential, promotes mitochondrial swelling, and induces apoptosis. Previous studies have found that the mitochondria of some crustaceans do not exhibit a calcium-regulated permeability transition. However, in the whiteleg shrimp Litopenaeus vannamei, contradictory evidence has prevented this phenomenon from being confirmed or rejected. Both the ability of L. vannamei mitochondria to take up large quantities of calcium through a putative mitochondrial calcium uniporter with conserved characteristics and permeability transition were investigated in this study by determining mitochondrial responses to cations overload. By measuring mitochondrial swelling and transmembrane potential, we investigated whether shrimp exposure to hypoxia-reoxygenation events or viral diseases may induce mitochondrial permeability transition. The results of this study demonstrate that shrimp mitochondria take up large quantities of calcium through a canonical mitochondrial calcium uniporter. Neither calcium nor other ions were observed to promote permeability transition. This phenomenon does not depend on the life cycle stage of shrimp, and it is not induced during hypoxia/reoxygenation events or in the presence of viral diseases. The absence of the permeability transition phenomenon and its adaptive meaning are discussed as a loss with biological advantages, possibly enabling organisms to survive under harsh environmental conditions.
KW - Adaptation
KW - Calcium
KW - Crustaceans
KW - Mitochondria
KW - Permeability transition
KW - Uncoupling mechanisms
UR - http://www.scopus.com/inward/record.url?scp=85105351648&partnerID=8YFLogxK
U2 - 10.1007/s00360-021-01369-7
DO - 10.1007/s00360-021-01369-7
M3 - Artículo
C2 - 33895873
AN - SCOPUS:85105351648
SN - 0174-1578
VL - 191
SP - 629
EP - 644
JO - Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology
JF - Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology
IS - 4
ER -