Analysis of an ongoing epidemic: Advantages and limitations of COVID-19 modeling

Mario Santana-Cibrian, Manuel A. Acuña-Zegarra, Mayra R. Tocto-Erazo, Ruth Corona-Moreno

Producción científica: Capítulo del libro/informe/acta de congresoCapítulorevisión exhaustiva

Resumen

COVID-19 caused many mathematical models to be formulated in order to address questions about the evolution of COVID-19 disease, in an attempt to diminish the effects of the disease on social health and the economy. This chapter explores how these questions have been changing since the beginning of the pandemic as well as the models used to answer them. Special emphasis is given to the limitations of the mathematical modeling that appeared with this ongoing disease, and whenever possible, strategies will be proposed to address these limitations. Mexico will be used as a case study.

Idioma originalInglés
Título de la publicación alojadaMathematical Modeling, Simulations, and AI for Emergent Pandemic Diseases
Subtítulo de la publicación alojadaLessons Learned From COVID-19
EditorialElsevier
Capítulo3
Páginas43-72
Número de páginas30
ISBN (versión digital)9780323950640
ISBN (versión impresa)9780323950657
DOI
EstadoPublicada - 24 mar. 2023

Nota bibliográfica

Publisher Copyright:
© 2023 Elsevier B.V. All rights reserved.

Huella

Profundice en los temas de investigación de 'Analysis of an ongoing epidemic: Advantages and limitations of COVID-19 modeling'. En conjunto forman una huella única.

Citar esto