Approximate construction of new conservative physical magnitudes through the fractional derivative of polynomial-type functions: A particular case in semiconductors of type AlxGa1¡xAs

Julio Cesar Campos García*, Carlos Figueroa Navarro, Martin Eduardo Molinar Tabares, L. Castro-A.

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

The fractional calculus has a very large diversification as it relates to applications from physical interpretations to experimental facts to
the modeling of new problems in the natural sciences. Within the framework of a recently published article, we obtained the fractional
derivative of the variable concentration x(z), the effective mass of the electron dependent on the positionm(z) and the potential energy V (z),
produced by the confinement of the electron in a semiconductor of type AlxGa1¡xAs, with which we can intuit a possible geometric and
physical interpretation. As a consequence, it is proposed the existence of three physical and geometric conservative quantities approximate
character, associated with each of these parameters of the semiconductor, which add to the many physical magnitudes that already exist in
the literature within the context of fractional variation rates. Likewise, we find that the fractional derivatives of these magnitudes, apart from
having a common critical point, manifest self-similar behavior, which could characterize them as a type of fractal associated with the type of
semiconductor structures under study.
Idioma originalInglés
Número de artículo6
Páginas (desde-hasta)874-880
Número de páginas6
PublicaciónRevista Mexicana de Fisica
Volumen66
N.º6
EstadoPublicada - 10 nov. 2020

Nota bibliográfica

1. A. Bancaud, C. Lavelle, S. Huet, and J. Ellenberg, Nucleic
Acids Research 40 (2012) 8783. https://doi.org/10.
1093/nar/gks586
2. F. Wang, Z. Liu, L. Jiao, C. Wang, and H. Guo, Fractals
25 (2017) 1750042. https://doi.org/10.1142/
S0218348X17500426
3. D. Zhang, A. Samal, and J. R. Brandle, International Journal of
Pattern Recognition and Artificial Intelligence 21 (2007) 561.
https://doi.org/10.1142/S0218001407005090
4. J. L. Liou, C. M. Tsai, and J. F. Lin, Wear 268 (2010) 431.
https://doi.org/10.1016/j.wear.2009.08.
033
5. S. Xu, and Y. Weng, Pattern Recognition Letters 27
(2006) 1942. https://doi.org/10.1016/j.patrec.
2006.05.005
6. R. Balka, Z. Buczolich, and M. Elekes, Advances in Mathematics
274 (2015) 881. https://doi.org/10.1016/j.
aim.2015.02.001
7. S. Butera, and M. Di Paola, Annals of Physics 350 (2014) 146.
https://doi.org/10.1016/j.aop.2014.07.008
8. L. K. Gallos, C. Song, and H. A. Makse, Physica A 386
(2007) 686. https://doi.org/10.1016/j.physa.
2007.07.069
9. J. A. Monsoriu, F. R. Villatoro, M. J. Mar´ın, J. F. Urchuegu´ıa,
and P. F. de C´ordova, Eur. J. Phys. 26 (2005) 603. https:
//doi.org/10.1088/0143-0807/26/4/005
10. W. Wei, J. Cai, X. Hu, and Q. Han, Geophy. Res.
Lett. 42 (2015) 4833. https://doi.org/10.1016/j.
physleta.2016.07.005
11. P. Igor, Report TUKE 10 (2001) 1.
12. R. R. Nigmatullin, Teoreticheskaya i Matematicheskaya
Fizika 90 (1992) 354. https://doi.org/10.1007/
BF01036529
13. D. Zhao, and M. Luo, Calcolo 54 (2017) 903. https://
doi.org/10.1007/s10092-017-0213-8
14. S. T. Nizami, N. Khan, and F. H. Khan, Can J. Comput. Math.
Nat. Sci. Eng. Med. 1 (2010) 1.
15. F. Riewe, Phys. Rev. E 53 (1996) 1890. https://doi.org/
10.1103/PhysRevE.53.1890
16. F. Riewe, Phys. Rev. E 55 (1997) 3581. https://doi.org/
10.1103/PhysRevE.55.3581
17. H. T. Ilhan, and I. Linscott, Acta Astronautica 68 (2011) 425.
https://doi.org/10.1016/j.actaastro.2010.
02.003
18. Y. Wei, Phys. Rev. E 93 (2016) 066103. https://doi.
org/10.1103/PhysRevE.93.066103
19. V. V. Uchaikin, and R. T. Sivatov, Communications in Nonlinear
Science and Numerical Simulation 13 (2008) 715. https:
//doi.org/10.1016/j.cnsns.2006.07.008
20. N. A. Torkhov, Journal of Surface Investigation, X-ray, Synchrotron
and Neutron Techniques 4 (2010) 45. https://
doi.org/10.1134/S1027451010010088
21. Z. Zh. Zhanabaev, T. Yu. Grevtseva, A. K. Imanbayeva, and A.
Zhanabayeva, Chaotic Modeling and Simulation 2 (2015) 169.
22. Z. Zh. Zhanabaev, and T. Yu Grevtseva, Reviews in Theoretical
Science 2 (2014) 1. https://doi.org/10.1166/rits.
2014.1023
23. B. Fazio et al., Light: Science & Applications 5 (2016) e16062.
https://doi.org/10.1038/lsa.2016.62
24. R. Sibatov, V. Shulezhko, and V. Svetukhin, Entropy 9 (2017)
463. https://doi.org/10.3390/e19090463
25. T. Chen, and B. Skinner, Physical Reviews B 94 (2016)
085146. https://doi.org/10.1103/PhysRevB.94.
085146
26. Molinar-Tabares, M. E. Castro-Arce, L. Figueroa-Navarro, and
J. C. Campos-Garc´ıa, Rev Mex Fis 62 (2016) 409.
27. S. Das, Functional Fractional Calculus. (Springer, Berlin,
2011).
28. J. Dong and M. Xu, Journal of Mathematical Physics 49 (2008)
052105. https://doi.org/10.1063/1.2917067
29. M. Molinar-Tabares and G. Campoy-G¨uere˜na, Journal of
Computational and Theoretical Nanoscience 7 (2010) 2308.
https://doi.org/10.1166/jctn.2010.1612
30. G. J. O. Jameson, The Mathematical Gazette 98 (2014) 58.
https://doi.org/10.1017/S0025557200001261

Palabras clave

  • Educative Science
  • fractional derivative
  • semiconductor parameter

Citar esto