Bioelectronics on Mammalian Collagen

Salvador Moreno*, Javad Keshtkar, Rodolfo Antonio Rodriguez-Davila, Arwa Bazaid, Hossam Ibrahim, Brian J. Rodriguez, Manuel Angel Quevedo-Lopez, Majid Minary-Jolandan*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

11 Citas (Scopus)


Collagen has emerged as an attractive bioelectronics substrate candidate, given its biological origins as a structural protein found in organisms. Substrates for implantable electronics should be biocompatible and have similar mechanical properties to implant target tissues. Furthermore, the characteristic amino acid sequences in collagen promote cell adhesion, migration, and proliferation, all of which are advantageous when compared to commonly explored cellulose and silk. However, denaturation temperature and swelling in water/vacuum have been fundamental barriers to device fabrication on collagen. It is here described how these problems can be avoided for the fabrication of semiconductor devices on collagen. Transfer printing using a sacrificial layer of germanium oxide is used to fabricate capacitors, transistors, and an integrated inverter transistor circuits on the collagen substrate. The mobility and threshold voltage of the transistors on collagen show only ≈41% and ≈22% drop compared to the ones on rigid silicon substrate. The enzymatic digestion and swelling ratio of collagen can be decreased by 80% and 175%, respectively, via glutaraldehyde cross-linking, while mechanical stiffness increases by more than 270%. This work demonstrates how collagen can be used as a bioelectronics substrate with tunable properties, thereby expanding its application range from transient to more permanent implantable electronics.

Idioma originalInglés
Número de artículo2000391
PublicaciónAdvanced Electronic Materials
EstadoPublicada - 1 ago. 2020
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


Profundice en los temas de investigación de 'Bioelectronics on Mammalian Collagen'. En conjunto forman una huella única.

Citar esto