TY - JOUR
T1 - Cellular Internalization and Toxicity of Chitosan Nanoparticles Loaded with Nobiletin in Eukaryotic Cell Models (Saccharomyces cerevisiae and Candida albicans)
AU - Hernández-Abril, Pedro Amado
AU - López-Meneses, Ana Karenth
AU - Lizardi-Mendoza, Jaime
AU - Plascencia-Jatomea, Maribel
AU - Luque-Alcaraz, Ana Guadalupe
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/4
Y1 - 2024/4
N2 - This study involved the synthesis and characterization of chitosan nanoparticles loaded with nobiletin (CNpN) and assessed their toxicity and cellular internalization in eukaryotic cell models (Saccharomyces cerevisiae and Candida albicans). Nanoparticles were prepared via the nanoprecipitation method and physicochemically characterized to determine their hydrodynamic diameter using dynamic light scattering (DLS), their surface charge through ζ-potential measurements, and their chemical structure via Fourier-transform infrared spectroscopy (FTIR). The hydrodynamic diameter and ζ-potential of chitosan nanoparticles (CNp) and CNpN were found to be 288.74 ± 2.37 nm and 596.60 ± 35.49 nm, and 34.51 ± 0.66 mV and 37.73 ± 0.19 mV, respectively. The scanning electron microscopy (SEM) images displayed a particle size of approximately 346 ± 69 nm, with notable sphericity for CNpN. FTIR analysis provided evidence of potential imine bonding between chitosan and nobiletin. Membrane integrity damage could be observed in both S. cerevisiae and C. albicans yeast stained with propidium iodide, demonstrating membrane integrity damage caused by CNp and CNpN, where higher concentration treatments inhibited the development of yeast cells. These findings suggest a selective therapeutic potential of CNpN, which could be promising for the development of antifungal and anticancer therapies. This study contributes to understanding the interaction between nanoparticles and eukaryotic cells, offering insights for future biomedical applications.
AB - This study involved the synthesis and characterization of chitosan nanoparticles loaded with nobiletin (CNpN) and assessed their toxicity and cellular internalization in eukaryotic cell models (Saccharomyces cerevisiae and Candida albicans). Nanoparticles were prepared via the nanoprecipitation method and physicochemically characterized to determine their hydrodynamic diameter using dynamic light scattering (DLS), their surface charge through ζ-potential measurements, and their chemical structure via Fourier-transform infrared spectroscopy (FTIR). The hydrodynamic diameter and ζ-potential of chitosan nanoparticles (CNp) and CNpN were found to be 288.74 ± 2.37 nm and 596.60 ± 35.49 nm, and 34.51 ± 0.66 mV and 37.73 ± 0.19 mV, respectively. The scanning electron microscopy (SEM) images displayed a particle size of approximately 346 ± 69 nm, with notable sphericity for CNpN. FTIR analysis provided evidence of potential imine bonding between chitosan and nobiletin. Membrane integrity damage could be observed in both S. cerevisiae and C. albicans yeast stained with propidium iodide, demonstrating membrane integrity damage caused by CNp and CNpN, where higher concentration treatments inhibited the development of yeast cells. These findings suggest a selective therapeutic potential of CNpN, which could be promising for the development of antifungal and anticancer therapies. This study contributes to understanding the interaction between nanoparticles and eukaryotic cells, offering insights for future biomedical applications.
KW - cellular
KW - chitosan
KW - nanoparticles
KW - nobiletin
UR - http://www.scopus.com/inward/record.url?scp=85190294768&partnerID=8YFLogxK
U2 - 10.3390/ma17071525
DO - 10.3390/ma17071525
M3 - Artículo
C2 - 38612040
AN - SCOPUS:85190294768
SN - 1996-1944
VL - 17
JO - Materials
JF - Materials
IS - 7
M1 - 1525
ER -