Comparative analysis of the thermal behavior between cellular concrete blocks and stabilized earth blocks as wall materials

I. Marincic*, J. M. Ochoa, M. G. Alpuche, I. González

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículo de la conferenciarevisión exhaustiva

4 Citas (Scopus)


In extreme climates like the desert climate of Northwest Mexico, indoor thermal conditions in buildings, and particularly in low-cost housing developments, are very uncomfortable. In buildings where the use of air conditioning devices can be afford, excessive energy is spent, leading to high acclimatization costs. In many cases, construction materials for low-cost houses are selected according to the lowest price, and not taking into account the best thermal behavior according to the local climate. Different types of blocks are widely used as a construction material for walls, such us earth blocks, adobe, concrete hollow blocks, cellular blocks, bricks, because of their low price and easy installation. Design strategies must be very carefully selected according to the local climate, because they have a great impact on energy consumptions and in the quality of life of the occupants. The selection of the appropriate materials for the envelope is part of these design strategies, and is the main subject of this paper. In this work we analyze the thermal behavior of a wall compound of two different materials: cellular concrete blocks and stabilized earth blocks. The monitored wall is part of a low-cost house constructed for demonstrative and experimental purposes. External and internal superficial temperatures have been measured and infrared images of the same areas have been analyzed. Infrared thermography is particularly useful to evaluate non-homogeneous materials or non-traditional materials, from which not all thermal properties are known. The thermal behavior is analyzed, in relation to the expected characteristics according to the climate, such as adequate thermal insulation and thermal inertia of the envelope, which are different for air-conditioning and non air-conditioning situations.

Idioma originalInglés
Páginas (desde-hasta)1783-1791
Número de páginas9
PublicaciónEnergy Procedia
EstadoPublicada - 2014
Evento2013 ISES Solar World Congress, SWC 2013 - Cancun, México
Duración: 3 nov. 20137 nov. 2013

Nota bibliográfica

Publisher Copyright:
© 2014 The Authors Published by Elsevier Ltd.


Profundice en los temas de investigación de 'Comparative analysis of the thermal behavior between cellular concrete blocks and stabilized earth blocks as wall materials'. En conjunto forman una huella única.

Citar esto