TY - JOUR
T1 - Cyclin-dependent kinase 2 (Cdk-2) from the White shrimp Litopenaeus vannamei: Molecular characterization and tissue-specific expression during hypoxia and reoxygenation
AU - Nuñez-Hernandez, Dahlia M.
AU - Camacho-Jiménez, Laura
AU - González-Ruiz, Ricardo
AU - Mata-Haro, Verónica
AU - Ezquerra-Brauer, Josafat Marina
AU - Yepiz-Plascencia, Gloria
PY - 2019/4/1
Y1 - 2019/4/1
N2 - © 2018 Elsevier Inc. The cell cycle comprises a series of steps necessary for cell growth until cell division. The participation of proteins responsible for cell cycle regulation, known as cyclin dependent kinases or Cdks, is necessary for cycle progression. Cyclin dependent kinase 2 (Cdk-2) is one of the most studied Cdks. This kinase regulates the passage through the G1/S phase and is involved in DNA replication in the S phase. Cdks have been extensively studied in mammals, but there is little information about these proteins in crustaceans. In the present work, the nucleotide and amino acid sequence of Cdk-2 from the white shrimp (Cdk-2) and its expression during hypoxia and reoxygenation are reported. Cdk-2 is a highly conserved protein and contains the serine/threonine catalytic domain, an ATP binding site and the PSTAIRE sequence. The predicted Cdk-2 structure showed the two-lobed structure characteristic of kinases. Expression of Cdk-2 was detected in hepatopancreas, gills and muscle, with hepatopancreas having the highest expression during normoxic conditions. Cdk-2 expression was significantly induced after hypoxia for 24 h in muscle cells, but in hypoxia exposure for 24 followed by 1 h of reoxygenation, the expression levels returned to the levels found in normoxic conditions, suggesting induction of cell cycle progression in muscular cells during hypoxia. No significant changes in expression of Cdk-2 were detected in these conditions in hepatopancreas and gills.
AB - © 2018 Elsevier Inc. The cell cycle comprises a series of steps necessary for cell growth until cell division. The participation of proteins responsible for cell cycle regulation, known as cyclin dependent kinases or Cdks, is necessary for cycle progression. Cyclin dependent kinase 2 (Cdk-2) is one of the most studied Cdks. This kinase regulates the passage through the G1/S phase and is involved in DNA replication in the S phase. Cdks have been extensively studied in mammals, but there is little information about these proteins in crustaceans. In the present work, the nucleotide and amino acid sequence of Cdk-2 from the white shrimp (Cdk-2) and its expression during hypoxia and reoxygenation are reported. Cdk-2 is a highly conserved protein and contains the serine/threonine catalytic domain, an ATP binding site and the PSTAIRE sequence. The predicted Cdk-2 structure showed the two-lobed structure characteristic of kinases. Expression of Cdk-2 was detected in hepatopancreas, gills and muscle, with hepatopancreas having the highest expression during normoxic conditions. Cdk-2 expression was significantly induced after hypoxia for 24 h in muscle cells, but in hypoxia exposure for 24 followed by 1 h of reoxygenation, the expression levels returned to the levels found in normoxic conditions, suggesting induction of cell cycle progression in muscular cells during hypoxia. No significant changes in expression of Cdk-2 were detected in these conditions in hepatopancreas and gills.
UR - https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85059735391&origin=inward
UR - https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85059735391&origin=inward
U2 - 10.1016/j.cbpa.2018.12.013
DO - 10.1016/j.cbpa.2018.12.013
M3 - Article
C2 - 30594527
SN - 1095-6433
SP - 56
EP - 63
JO - Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology
JF - Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology
ER -