Empirical approximation in markov games under unbounded payoff: Discounted and average criteria

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

4 Citas (Scopus)

Resumen

This work deals with a class of discrete-time zero-sum Markov games whose state process fxtg evolves according to the equation xt+1 = F(xt; at; bt; ϵt); where at and bt represent the actions of player 1 and 2, respectively, and {ϵt} is a sequence of independent and identically distributed random variables with unknown distribution θ: Assuming possibly unbounded payo θ, and using the empirical distribution to estimate θ; we introduce approximation schemes for the value of the game as well as for optimal strategies considering both, discounted and average criteria.

Idioma originalInglés
Páginas (desde-hasta)694-716
Número de páginas23
PublicaciónKybernetika
Volumen53
N.º4
DOI
EstadoPublicada - 2017

Huella

Profundice en los temas de investigación de 'Empirical approximation in markov games under unbounded payoff: Discounted and average criteria'. En conjunto forman una huella única.

Citar esto