Resumen
Search solutions to optimize resources for energy demand is a complex problem. Factors such as the increase in energy consumption and environmental variation are basic to estimate the precision of the resource that will be generate. This article describes the procedure to correct errors on the results of energy demand forecasts, previously obtained with a library based on time series and the application of the 2G algorithm in the error correction stage. The experimental results indicate efficiency, however, for optimal results, it is necessary to have a larger dataset.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | Proceedings - 2020 International Conference on Computational Science and Computational Intelligence, CSCI 2020 |
Editorial | Institute of Electrical and Electronics Engineers Inc. |
Páginas | 431-435 |
Número de páginas | 5 |
ISBN (versión digital) | 9781728176246 |
DOI | |
Estado | Publicada - dic. 2020 |
Evento | 2020 International Conference on Computational Science and Computational Intelligence, CSCI 2020 - Las Vegas, Estados Unidos Duración: 16 dic. 2020 → 18 dic. 2020 |
Serie de la publicación
Nombre | Proceedings - 2020 International Conference on Computational Science and Computational Intelligence, CSCI 2020 |
---|
Conferencia
Conferencia | 2020 International Conference on Computational Science and Computational Intelligence, CSCI 2020 |
---|---|
País/Territorio | Estados Unidos |
Ciudad | Las Vegas |
Período | 16/12/20 → 18/12/20 |
Nota bibliográfica
Publisher Copyright:© 2020 IEEE.