Resumen
This study reports a numerical-experimental analysis of turbulent mixed convection in a ventilated room with located heat sources. The ventilated room is modeled as a cavity. The effect of thermal convection due to the located heat sources on opposite walls of the cavity is analyzed. A parametric study was performed in a ventilated cubic cavity to consider different values of heat flux supplied by heat sources, along with two configurations for ventilation and two air inlet velocities. Five Reynolds averaged Navier-Stokes (RANS) turbulence models [standard k-ϵ, realizable k-ϵ, renormalization group (RNG) k-ϵ, standard k-ω, and shear-stress k-ω] were compared with experimental temperature profiles and heat transfer coefficients. With the validated model, the effect of heat sources on temperature fields, velocity vectors, and heat transfer convective coefficients is presented and discussed. RNG k-ϵ turbulence model has the lowest average percentage differences between the experimental data and the numerical profiles with 9%. The average Nusselt numbers for heat source 1 (SH1) are between 53.72 and 182.72, while for heat source 2 (SH2), they are between 106.36 and 162.29.
Idioma original | Inglés estadounidense |
---|---|
Publicación | Journal of Energy Engineering |
Volumen | 146 |
N.º | 4 |
DOI | |
Estado | Publicada - 1 ago 2020 |
Palabras clave
- Located heat sources
- Mixed convection
- Turbulence models