TY - JOUR
T1 - Experimental and theoretical investigation on the molecular structure, spectroscopic and electric properties of 2,4-dinitrodiphenylamine, 2-nitro-4-(trifluoromethyl)aniline and 4-bromo-2-nitroaniline
AU - Hernández-Paredes, Javier
AU - Hernández-Negrete, Ofelia
AU - Carrillo-Torres, Roberto C.
AU - Sánchez-Zeferino, Raúl
AU - Duarte-Moller, Alberto
AU - Alvarez-Ramos, Mario E.
N1 - Publisher Copyright:
© 2015 Elsevier B.V.
PY - 2015/10/5
Y1 - 2015/10/5
N2 - 2,4-Dinitrodiphenylamine (I), 2-nitro-4-(trifluoromethyl)aniline (II) and 4-bromo-2-nitroaniline (III) have been investigated by DFT and experimental FTIR, Raman and UV-Vis spectroscopies. The gas-phase molecular geometries were consistent with similar compounds already reported in the literature. From the vibrational analysis, the main functional groups were identified and their absorption bands were assigned. Some differences were found between the calculated and the experimental UV-Vis spectra. These differences were analyzed and explained in terms of the TD-DFT/B3LYP limitations, which were mainly attributed to charge-transfer (CT) effects. These findings were in agreement with previous works, which reported that TD-DFT/B3LYP calculations diverge from experimental results when the electronic transitions involve CT. Despite this, TD-DFT/B3LYP calculations provided satisfactory results and a detailed description of the electronic transitions involved in the absorption bands of the UV-Vis spectra. In terms of the NLO properties, it was found that compound (I) is a good candidate for NLO applications and deserves further study due to its good β values. However, the β values for compounds (II) and (III) were negatively affected compared to those found on o-nitroaniline.
AB - 2,4-Dinitrodiphenylamine (I), 2-nitro-4-(trifluoromethyl)aniline (II) and 4-bromo-2-nitroaniline (III) have been investigated by DFT and experimental FTIR, Raman and UV-Vis spectroscopies. The gas-phase molecular geometries were consistent with similar compounds already reported in the literature. From the vibrational analysis, the main functional groups were identified and their absorption bands were assigned. Some differences were found between the calculated and the experimental UV-Vis spectra. These differences were analyzed and explained in terms of the TD-DFT/B3LYP limitations, which were mainly attributed to charge-transfer (CT) effects. These findings were in agreement with previous works, which reported that TD-DFT/B3LYP calculations diverge from experimental results when the electronic transitions involve CT. Despite this, TD-DFT/B3LYP calculations provided satisfactory results and a detailed description of the electronic transitions involved in the absorption bands of the UV-Vis spectra. In terms of the NLO properties, it was found that compound (I) is a good candidate for NLO applications and deserves further study due to its good β values. However, the β values for compounds (II) and (III) were negatively affected compared to those found on o-nitroaniline.
KW - DFT
KW - HOMO-LUMO
KW - Hyperpolarizability
KW - NLO
KW - UV-Vis
UR - http://www.scopus.com/inward/record.url?scp=84928978818&partnerID=8YFLogxK
U2 - 10.1016/j.saa.2015.04.080
DO - 10.1016/j.saa.2015.04.080
M3 - Artículo
SN - 1386-1425
VL - 149
SP - 240
EP - 253
JO - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
JF - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
ER -