Fluctuating periodic solutions and moment boundedness of a stochastic model for the bone remodeling process

Saúl Díaz Infante Velasco, Silvia Jerez, Benito Chen-Charpentier

Resultado de la investigación: Contribución a una revistaArtículo

5 Citas (Scopus)

Resumen

In this work, we model osteoclast-osteoblast population dynamics with random environmental fluctuations in order to understand the random variations of the bone remodeling process in real life. For this purpose, we construct a stochastic differential model for the interactions between the osteoclast and osteoblast cell populations using the parameter perturbation technique. We prove the existence of a globally attractive positive unique solution for the stochastically perturbed system. Also, the stochastic boundedness of the solution is demonstrated using its p-th order moments for p ≥ 1. Finally, we show that the introduction of noise in the deterministic model provides a fluctuating periodic solution. Numerical evidence supports our theoretical results and a discussion of the results is carried out.
Idioma originalEspañol (México)
Páginas (desde-hasta)153
Número de páginas164
PublicaciónMathematical Biosciences
Volumen299
DOI
EstadoPublicada - 8 mar 2018

Palabras clave

  • Bone remodeling Stochastic differential equations Brownian motion Moment boundedness Fluctuating periodic solution Osteoclasts Osteoblasts

Citar esto