TY - JOUR
T1 - Folate Functionalized PLGA Nanoparticles Loaded with Plasmid pVAX1-NH36: Mathematical Analysis of Release
AU - Gutiérrez-Valenzuela, Cindy Alejandra
AU - Guerrero-Germán, Patricia
AU - Tejeda-Mansir, Armando
AU - Esquivel, Reynaldo
AU - Guzmán-Z, Roberto
AU - Lucero-Acuña, Armando
PY - 2016/11/25
Y1 - 2016/11/25
N2 - © 2016 by the authors. Plasmid DNA (pVAX1-NH36) was encapsulated in nanoparticles of poly-dl-lactic-coglycolic (PLGA) functionalized with polyethylene glycol (PEG) and folic acid (PLGA-PEG-FA) without losing integrity. PLGA-PEG-FA nanoparticles loaded with pVAX1-NH36 (pDNA-NPs) were prepared by using a double emulsification-solvent evaporation technique. PLGA-PEG-FA synthesis was verified by FT-IR and spectrophotometry methods. pVAX1-NH36 was replicated in Escherichia coli (E. coli) cell cultures. Atomic force microscopy (AFM) analysis confirmed pDNA-NPs size with an average diameter of 177-229 nm, depending on pVAX1-NH36 loading and zeta potentials were below -24 mV for all preparations. In vitro release studies confirmed a multiphase release profile for the duration of more than 30-days. Plasmid release kinetics were analyzed with a release model that considered simultaneous contributions of initial burst and degradation-relaxation of nanoparticles. Fitting of release model against experimental data presented excellent correlation. This mathematical analysis presents a novel approach to describe and predict the release of plasmid DNA from biodegradable nanoparticles.
AB - © 2016 by the authors. Plasmid DNA (pVAX1-NH36) was encapsulated in nanoparticles of poly-dl-lactic-coglycolic (PLGA) functionalized with polyethylene glycol (PEG) and folic acid (PLGA-PEG-FA) without losing integrity. PLGA-PEG-FA nanoparticles loaded with pVAX1-NH36 (pDNA-NPs) were prepared by using a double emulsification-solvent evaporation technique. PLGA-PEG-FA synthesis was verified by FT-IR and spectrophotometry methods. pVAX1-NH36 was replicated in Escherichia coli (E. coli) cell cultures. Atomic force microscopy (AFM) analysis confirmed pDNA-NPs size with an average diameter of 177-229 nm, depending on pVAX1-NH36 loading and zeta potentials were below -24 mV for all preparations. In vitro release studies confirmed a multiphase release profile for the duration of more than 30-days. Plasmid release kinetics were analyzed with a release model that considered simultaneous contributions of initial burst and degradation-relaxation of nanoparticles. Fitting of release model against experimental data presented excellent correlation. This mathematical analysis presents a novel approach to describe and predict the release of plasmid DNA from biodegradable nanoparticles.
UR - https://doi.org/10.3390/app6120364
U2 - 10.3390/app6120364
DO - 10.3390/app6120364
M3 - Article
JO - Applied Sciences (Switzerland)
JF - Applied Sciences (Switzerland)
SN - 2076-3417
ER -