Generalized Cauchy-Riemann equations in non-identity bases with application to the algebrizability of vector fields

Julio Cesar Avila*, Martín Eduardo Frías-Armenta, Elifalet López-González

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

We complete the work done by James A. Ward in the mid-twentieth century on a system of partial differential equations that defines an algebra {\mathbb{A}} for which this system is the generalized Cauchy-Riemann equations for the derivative introduced by Sheffers at the end of the nineteenth century with respect to {\mathbb{A}}, which is also known as the Lorch derivative with respect to {\mathbb{A}}, and recently simply called {\mathbb{A}} -differentiability. We get a characterization of finite-dimensional algebras, which are associative commutative with unity.

Idioma originalInglés
Páginas (desde-hasta)1471-1483
Número de páginas13
PublicaciónForum Mathematicum
Volumen35
N.º6
DOI
EstadoPublicada - 1 nov. 2023

Nota bibliográfica

Publisher Copyright:
© 2023 Walter de Gruyter GmbH, Berlin/Boston.

Huella

Profundice en los temas de investigación de 'Generalized Cauchy-Riemann equations in non-identity bases with application to the algebrizability of vector fields'. En conjunto forman una huella única.

Citar esto