Geometrical Aspects of the Hamiltonization Problem of Dynamical Systems

Misael Avendaño-Camacho, Claudio César García-Mendoza, José Crispín Ruíz-Pantaleón, Eduardo Velasco-Barreras

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Some positive answers to the problem of endowing a dynamical system with a Hamiltonian formulation are presented within the class of Poisson structures in a geomet-ric framework. We address this problem on orientable manifolds and by using decomposable Poisson structures. In the first case, the existence of a Hamiltonian formulation is ensured under the vanishing of some topological obstructions, improving a result of Gao. In the sec-ond case, we apply a variant of the Hojman construction to solve the problem for vector fields admitting a transversally invariant metric and, in particular, for infinitesimal generators of proper actions. Finally, we also consider the hamiltonization problem for Lie group actions and give solutions in the particular case in which the acting Lie group is a low-dimensional torus.

Idioma originalInglés
Número de artículo038
PublicaciónSymmetry, Integrability and Geometry: Methods and Applications (SIGMA)
Volumen18
DOI
EstadoPublicada - 2022

Nota bibliográfica

Publisher Copyright:
© 2022, Institute of Mathematics. All rights reserved.

Huella

Profundice en los temas de investigación de 'Geometrical Aspects of the Hamiltonization Problem of Dynamical Systems'. En conjunto forman una huella única.

Citar esto