Geometry and dynamics of the Schur–Cohn stability algorithm for one variable polynomials

Baltazar Aguirre-Hernández, Martín Eduardo Frías-Armenta*, Jesús Muciño-Raymundo

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

4 Citas (Scopus)

Resumen

We provided a detailed study of the Schur–Cohn stability algorithm for Schur stable polynomials of one complex variable. Firstly, a real analytic principal C× S1-bundle structure in the family of Schur stable polynomials of degree n is constructed. Secondly, we consider holomorphic C-actions A on the space of polynomials of degree n. For each orbit {s·P(z)|s∈C} of A, we study the dynamical problem of the existence of a complex rational vector field X(z) on C such that its holomorphic s-time describes the geometric change of the n-root configurations of the orbit { s· P(z) = 0 }. Regarding the above C-action coming from the C× S1-bundle structure, we prove the existence of a complex rational vector field X(z) on C, which describes the geometric change of the n-root configuration in the unitary disk D of a C-orbit of Schur stable polynomials. We obtain parallel results in the framework of anti-Schur polynomials, which have all their roots in C\ D¯ , by constructing a principal C× S1-bundle structure in this family of polynomials. As an application for a cohort population model, a study of the Schur stability and a criterion of the loss of Schur stability are described.

Idioma originalInglés
Páginas (desde-hasta)545-587
Número de páginas43
PublicaciónMathematics of Control, Signals, and Systems
Volumen31
N.º4
DOI
EstadoPublicada - 1 dic. 2019

Nota bibliográfica

Publisher Copyright:
© 2019, Springer-Verlag London Ltd., part of Springer Nature.

Huella

Profundice en los temas de investigación de 'Geometry and dynamics of the Schur–Cohn stability algorithm for one variable polynomials'. En conjunto forman una huella única.

Citar esto