Global product structure for a space of special matrices

Baltazar Aguirre-Hernández, Francisco A. Carrillo, Jesús F. Espinoza*, Horacio Leyva

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)

Resumen

The importance of the Hurwitz–Metzler matrices and the Hurwitz symmetric matrices can be appreciated in different applications: communication networks, biology and economics are some of them. In this paper, we use an approach of differential topology for studying such matrices. Our results are as follows: the space of the n× n Hurwitz symmetric matrices has a product manifold structure given by the space of the (n- 1) × (n- 1) Hurwitz symmetric matrices and the Euclidean space. Additionally we study the space of Hurwitz–Metzler matrices and these ideas let us do an analysis of robustness of Hurwitz–Metzler matrices. In particular, we study the insulin model as an application.

Idioma originalInglés
Páginas (desde-hasta)77-85
Número de páginas9
PublicaciónBoletin de la Sociedad Matematica Mexicana
Volumen25
N.º1
DOI
EstadoPublicada - 11 mar. 2019

Nota bibliográfica

Publisher Copyright:
© 2017, Sociedad Matemática Mexicana.

Huella

Profundice en los temas de investigación de 'Global product structure for a space of special matrices'. En conjunto forman una huella única.

Citar esto