Resumen
Hybrid nanocarriers with multifunctional properties have wide therapeutic and diagnostic applications. We have constructed hollow silica nanogolf balls (HGBs) and gold-embedded hollow silica nanogolf balls (Au@SiO2 HGBs) using the layer-by-layer approach on a symmetric polystyrene (PS) Janus template; the template consists of smaller PS spheres attached to an oppositely charged large PS core. Potential measurement supports the electric force-based template-assisted synthesis mechanism. Electron microscopy, UV-vis, and near-infrared (NIR) spectroscopy show that HGBs or Au@SiO2 HGBs are composed of a porous silica shell with an optional dense layer of gold nanoparticles embedded in the silica shell. To visualize their cellular uptake and imaging potential, Au@SiO2 HGBs were loaded with quantum dots (QDs). Confocal fluorescent microscopy and atomic force microscopy imaging show reliable endocytosis of QD-loaded Au@SiO2 HGBs in adherent HeLa cells and circulating red blood cells (RBCs). Surface-enhanced Raman spectroscopy of Au@SiO2 HGBs in RBC cells show enhanced intensity of the Raman signal specific to the RBCs' membrane specific spectral markers. Au@SiO2 HGBs show localized surface plasmon resonance and heat-induced HeLa cell death in the NIR range. These hybrid golf ball nanocarriers would have broad applications in personalized nanomedicine ranging from in vivo imaging to photothermal therapy.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 27533-27543 |
Número de páginas | 11 |
Publicación | ACS Applied Materials and Interfaces |
Volumen | 9 |
N.º | 33 |
DOI | |
Estado | Publicada - 23 ago. 2017 |
Nota bibliográfica
Publisher Copyright:© 2017 American Chemical Society.