TY - JOUR
T1 - High steric constraints and molecular distortion in methyl-substituted amide-based paracyclophanes and the binuclear Cu2+ complexes
T2 - X-ray structures, NMR and absorption spectra
AU - Inoue, Michiko B.
AU - Inoue, Motomichi
AU - Sugich-Miranda, Rocio
AU - Machi, Lorena
AU - Velazquez, Enrique F.
AU - Fernando, Quintus
N1 - Funding Information:
The X-ray studies were carried out by using an X-ray diffractometer provided by the National Science Foundation (Grant No. CHE9610374) to the Molecular Structure Laboratory at the University of Arizona.
PY - 2001/5/28
Y1 - 2001/5/28
N2 - Chelating paracyclophanes that are sterically constrained to a great extent have been synthesized and characterized by X-ray crystallography and NMR spectroscopy: the macrocycles studied are 2,9,18,25-tetraoxo-4,7,20,23-tetrakis(carboxymethyl)-1,4,7,10,17,20,23,26- octaaza[10.10]paracyclophane, abbreviated as (Lpd)H4, and its 2,5-dimethyl-p-phenylene and tetramethyl-p-phenylene derivatives, abbreviated as (Ldmpd)H4 and (Ltmpd)H4, respectively. Steric interaction between tetramethylphenylene and amide groups in the tetramethyl derivative defines the conformation of the macrocyclic cavity, and causes unusual spectroscopic and chemical properties including the extreme line-broadening of 1H NMR signals and the low basicity of amino nitrogen; such properties are not observed for the other macrocycles, in which steric interaction between phenylene and amide groups is less effective. The complexation of the highly strained ligand (Ltmpd)H4 with Cu2+ ions has been studied by X-ray crystallography and solution electronic spectroscopy. The macrocycle forms a binuclear complex of [Cu2(LH-4)]4- type in which four amide nitrogen atoms are deprotonated and each metal ion is coordinated to two amide nitrogen atoms and two amino nitrogen atoms. In the binuclear chelate molecule, the severe contraction of the macrocyclic ring forces the phenylene groups distorted to a boat form, due to the steric effect of the tetramethyl substituents. As a result, the metal-ligand charge-transfer interaction in the binuclear complex differs from that in the mononuclear chelate of the same macrocycle.
AB - Chelating paracyclophanes that are sterically constrained to a great extent have been synthesized and characterized by X-ray crystallography and NMR spectroscopy: the macrocycles studied are 2,9,18,25-tetraoxo-4,7,20,23-tetrakis(carboxymethyl)-1,4,7,10,17,20,23,26- octaaza[10.10]paracyclophane, abbreviated as (Lpd)H4, and its 2,5-dimethyl-p-phenylene and tetramethyl-p-phenylene derivatives, abbreviated as (Ldmpd)H4 and (Ltmpd)H4, respectively. Steric interaction between tetramethylphenylene and amide groups in the tetramethyl derivative defines the conformation of the macrocyclic cavity, and causes unusual spectroscopic and chemical properties including the extreme line-broadening of 1H NMR signals and the low basicity of amino nitrogen; such properties are not observed for the other macrocycles, in which steric interaction between phenylene and amide groups is less effective. The complexation of the highly strained ligand (Ltmpd)H4 with Cu2+ ions has been studied by X-ray crystallography and solution electronic spectroscopy. The macrocycle forms a binuclear complex of [Cu2(LH-4)]4- type in which four amide nitrogen atoms are deprotonated and each metal ion is coordinated to two amide nitrogen atoms and two amino nitrogen atoms. In the binuclear chelate molecule, the severe contraction of the macrocyclic ring forces the phenylene groups distorted to a boat form, due to the steric effect of the tetramethyl substituents. As a result, the metal-ligand charge-transfer interaction in the binuclear complex differs from that in the mononuclear chelate of the same macrocycle.
KW - Binuclear complexes
KW - Copper complexes
KW - Crystal structures
KW - Macrocyclic complexes
UR - http://www.scopus.com/inward/record.url?scp=0035962779&partnerID=8YFLogxK
U2 - 10.1016/S0020-1693(01)00362-0
DO - 10.1016/S0020-1693(01)00362-0
M3 - Artículo
SN - 0020-1693
VL - 317
SP - 181
EP - 189
JO - Inorganica Chimica Acta
JF - Inorganica Chimica Acta
IS - 1-2
ER -