Markov control models with unknown random state–action-dependent discount factors

J. Adolfo Minjárez-Sosa*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

14 Citas (Scopus)

Resumen

The paper deals with a class of discounted discrete-time Markov control models with non-constant discount factors of the form $$\tilde{\alpha } (x_{n},a_{n},\xi _{n+1})$$α~(xn,an,ξn+1), where $$x_{n},a_{n},$$xn,an, and $$\xi _{n+1}$$ξn+1 are the state, the action, and a random disturbance at time $$n,$$n, respectively, taking values in Borel spaces. Assuming that the one-stage cost is possibly unbounded and that the distributions of $$\xi _{n}$$ξn are unknown, we study the corresponding optimal control problem under two settings. Firstly we assume that the random disturbance process $$\left\{ \xi _{n}\right\} $$ξn is formed by observable independent and identically distributed random variables, and then we introduce an estimation and control procedure to construct strategies. Instead, in the second one, $$\left\{ \xi _{n}\right\} $$ξn is assumed to be non-observable whose distributions may change from stage to stage, and in this case the problem is studied as a minimax control problem in which the controller has an opponent selecting the distribution of the corresponding random disturbance at each stage.

Idioma originalInglés
Páginas (desde-hasta)743-772
Número de páginas30
PublicaciónTOP
Volumen23
N.º3
DOI
EstadoPublicada - 1 oct. 2015

Nota bibliográfica

Publisher Copyright:
© 2015, Sociedad de Estadística e Investigación Operativa.

Huella

Profundice en los temas de investigación de 'Markov control models with unknown random state–action-dependent discount factors'. En conjunto forman una huella única.

Citar esto