TY - JOUR
T1 - Metal bioaccessibility, particle size distribution and polydispersity of playground dust in synthetic lysosomal fluids
AU - Meza-Figueroa, Diana
AU - Barboza-Flores, Marcelino
AU - Romero, Francisco M.
AU - Acosta-Elias, Mónica
AU - Hernández-Mendiola, Ernesto
AU - Maldonado-Escalante, Francisco
AU - Pérez-Segura, Efrén
AU - González-Grijalva, Belem
AU - Meza-Montenegro, Mercedes
AU - García-Rico, Leticia
AU - Navarro-Espinoza, Sofía
AU - Santacruz-Gómez, Karla
AU - Gallego-Hernández, Ana
AU - Pedroza-Montero, Martín
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/4/15
Y1 - 2020/4/15
N2 - Inhalation of playground dust-derived fine particles in schoolyards poses a risk from exposure to metal(oids) and minerals. In this work, we obtained the total concentration and bioaccessibility of metal(oids) with Gamble Solution (GS) and Artificial Lysosomal Fluid (ALF) synthetic solutions, simulating the extracellular neutral pH environment of the lung and the intracellular conditions of the macrophage, respectively. Scanning Electron Microscope (SEM), and Dynamic Light Scattering analysis (DLS) techniques were used to characterize particles with a size smaller than 2.5 μm, which can be assimilated by macrophages in the deep part of the lung. Arsenic (As), lead (Pb), copper (Cu), manganese (Mn), zinc (Zn), and iron (Fe) showed concentrations of 39.9, 147.9, 286, 1369, 2313, 112,457 mg·kg− 1, respectively. The results indicated that all studied elements were enriched when compared to (i) local geochemical background and (ii) findings reported in other cities around the world. Bioaccessibility of metal(oids) in GS was low-moderate for most studied elements. However, in ALF assays, bioaccessibility was high among the samples: for lead (Pb = 34–100%), arsenic (As = 14.7–100%), copper (Cu = 17.9–100%), and zinc (Zn = 35–52%) possibly related to hydrophobic minerals in dust. SEM and DLS image analysis showed that playground dust particles smaller than 2.5 μm are dominant, particularly particles with a size range of 500–600 nm. The polydispersity detected in these particle sizes showed that most of them might be crystalline compounds (elongated shapes) forming agglomerates instead of combustion particles (spheres). Moreover, the circularity detected varies from 0.57 to 0.79 (low roundness), which corroborates this finding. The presence of agglomerates of ultrafine/nanoparticles containing highly bioaccessible metals in playground sites may have severe implications in children's health. Therefore, further studies are required to characterize the size distribution, structure, shape and composition of such minerals which are essential factors related to the toxicology of inhaled dust particles.
AB - Inhalation of playground dust-derived fine particles in schoolyards poses a risk from exposure to metal(oids) and minerals. In this work, we obtained the total concentration and bioaccessibility of metal(oids) with Gamble Solution (GS) and Artificial Lysosomal Fluid (ALF) synthetic solutions, simulating the extracellular neutral pH environment of the lung and the intracellular conditions of the macrophage, respectively. Scanning Electron Microscope (SEM), and Dynamic Light Scattering analysis (DLS) techniques were used to characterize particles with a size smaller than 2.5 μm, which can be assimilated by macrophages in the deep part of the lung. Arsenic (As), lead (Pb), copper (Cu), manganese (Mn), zinc (Zn), and iron (Fe) showed concentrations of 39.9, 147.9, 286, 1369, 2313, 112,457 mg·kg− 1, respectively. The results indicated that all studied elements were enriched when compared to (i) local geochemical background and (ii) findings reported in other cities around the world. Bioaccessibility of metal(oids) in GS was low-moderate for most studied elements. However, in ALF assays, bioaccessibility was high among the samples: for lead (Pb = 34–100%), arsenic (As = 14.7–100%), copper (Cu = 17.9–100%), and zinc (Zn = 35–52%) possibly related to hydrophobic minerals in dust. SEM and DLS image analysis showed that playground dust particles smaller than 2.5 μm are dominant, particularly particles with a size range of 500–600 nm. The polydispersity detected in these particle sizes showed that most of them might be crystalline compounds (elongated shapes) forming agglomerates instead of combustion particles (spheres). Moreover, the circularity detected varies from 0.57 to 0.79 (low roundness), which corroborates this finding. The presence of agglomerates of ultrafine/nanoparticles containing highly bioaccessible metals in playground sites may have severe implications in children's health. Therefore, further studies are required to characterize the size distribution, structure, shape and composition of such minerals which are essential factors related to the toxicology of inhaled dust particles.
KW - Agglomerates
KW - Lung bioaccessibility
KW - Metal(oids)
KW - Particle size
KW - Playground dust
UR - http://www.scopus.com/inward/record.url?scp=85077753142&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2019.136481
DO - 10.1016/j.scitotenv.2019.136481
M3 - Artículo
C2 - 31954252
AN - SCOPUS:85077753142
SN - 0048-9697
VL - 713
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 136481
ER -