TY - JOUR
T1 - Microparticles from Wheat-Gluten Proteins Soluble in Ethanol by Nanoprecipitation: Preparation, Characterization, and Their Study as a Prolonged-Release Fertilizer
T2 - Preparation, characterization, and their study as a prolonged-release fertilizer
AU - Barreras-Urbina, Carlos G.
AU - Rodriguez-Felix, Francisco
AU - Lopez-Ahumada, Guadalupe A.
AU - Burruel-Ibarra, Silvia E.
AU - Tapia-Hernandez, Jose A.
AU - Castro-Enriquez, Daniela D.
AU - Rueda-Puente, Edgar O.
N1 - Publisher Copyright:
Copyright © 2018 Carlos G. Barreras-Urbina et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
PY - 2018
Y1 - 2018
N2 - At present, the development of natural polymeric microparticles is carried out to obtain release systems. Prolonged-release systems are a potential solution to avoid nitrogen (N) losses in agricultural fields. The aim of this study was to develop microspheres from wheat-gluten proteins soluble in ethanol 70% (v/v), to ascertain their characterization, and to study their potential application in agricultural fields. Soluble-protein extraction was performed with 1600 mL of ethanol 70% (v/v). Likewise, ethanolic solutions with protein concentrations of 0.5%, 1%, and 2% (w/v) are classified as non-Newtonian fluids with pseudoplastic behavior. Using the nanoprecipitation method, it was possible to develop urea-loaded microspheres with a diameter ranging from 900 nm–1.7 μm. The Fourier transform infrared spectroscopy (FTIR) test exhibited interaction through hydrogen bonds between carbonyls and amino groups from the urea and proteins. Also, the thermogravimetric analysis (TGA) test demonstrated thermal stability at 130°C. The release experiment showed that the microspheres achieved equilibrium when 88% of the urea was released. Finally, according to the empirical model of Ritger and Peppas, urea release is carried out through Fickian diffusion. We conclude that the microspheres could be applied in the fields and with this improve agricultural practices. Also, they could reduce the potential environmental pollution and developing a sustainable agriculture.
AB - At present, the development of natural polymeric microparticles is carried out to obtain release systems. Prolonged-release systems are a potential solution to avoid nitrogen (N) losses in agricultural fields. The aim of this study was to develop microspheres from wheat-gluten proteins soluble in ethanol 70% (v/v), to ascertain their characterization, and to study their potential application in agricultural fields. Soluble-protein extraction was performed with 1600 mL of ethanol 70% (v/v). Likewise, ethanolic solutions with protein concentrations of 0.5%, 1%, and 2% (w/v) are classified as non-Newtonian fluids with pseudoplastic behavior. Using the nanoprecipitation method, it was possible to develop urea-loaded microspheres with a diameter ranging from 900 nm–1.7 μm. The Fourier transform infrared spectroscopy (FTIR) test exhibited interaction through hydrogen bonds between carbonyls and amino groups from the urea and proteins. Also, the thermogravimetric analysis (TGA) test demonstrated thermal stability at 130°C. The release experiment showed that the microspheres achieved equilibrium when 88% of the urea was released. Finally, according to the empirical model of Ritger and Peppas, urea release is carried out through Fickian diffusion. We conclude that the microspheres could be applied in the fields and with this improve agricultural practices. Also, they could reduce the potential environmental pollution and developing a sustainable agriculture.
UR - http://www.scopus.com/inward/record.url?scp=85062641558&partnerID=8YFLogxK
U2 - 10.1155/2018/1042798
DO - 10.1155/2018/1042798
M3 - Artículo
SN - 1687-9422
VL - 2018
JO - International Journal of Polymer Science
JF - International Journal of Polymer Science
M1 - 1042798
ER -