Non-monotonic blow-up problems: Test problems with solutions in elementary functions, numerical integration based on non-local transformations

Andrei D. Polyanin*, Inna K. Shingareva

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

8 Citas (Scopus)

Resumen

We consider blow-up problems having non-monotonic singular solutions that tend to infinity at a previously unknown point. For second-, third-, and fourth-order nonlinear ordinary differential equations, the corresponding multi-parameter test problems allowing exact solutions in elementary functions are proposed for the first time. A method of non-local transformations, that allows to numerically integrate non-monotonic blow-up problems, is described. A comparison of exact and numerical solutions showed the high efficiency of this method. It is important to note that the method of non-local transformations can be useful for numerical integration of other problems with large solution gradients (for example, in problems with solutions of boundary-layer type).

Idioma originalInglés
Páginas (desde-hasta)123-129
Número de páginas7
PublicaciónApplied Mathematics Letters
Volumen76
DOI
EstadoPublicada - feb. 2018

Nota bibliográfica

Publisher Copyright:
© 2017 Elsevier Ltd

Huella

Profundice en los temas de investigación de 'Non-monotonic blow-up problems: Test problems with solutions in elementary functions, numerical integration based on non-local transformations'. En conjunto forman una huella única.

Citar esto