On the Geometry of Slow-Fast Phase Spaces and the Semiclassical Quantization

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

Abstract: In the context of the averaging method for Poisson and symplectic structures and the theory of Hannay–Berry connections, we discuss some aspects of the semiclassical quantization for a class of slow-fast Hamiltonian systems with two degrees of freedom. For a pseudodifferential Weyl operator with two small parameters corresponding to the semiclassical and adiabatic limits, we show how to construct some series of quasimodes associated to a family of Lagrangian 2-tori which are almost invariant with respect to the classical dynamics.
Idioma originalInglés
Páginas (desde-hasta)8-21
Número de páginas14
PublicaciónRussian Journal of Mathematical Physics
Volumen28
N.º1
DOI
EstadoPublicada - 1 ene 2021

Huella

Profundice en los temas de investigación de 'On the Geometry of Slow-Fast Phase Spaces and the Semiclassical Quantization'. En conjunto forman una huella única.

Citar esto