On the splitting of infinitesimal Poisson automorphisms around symplectic leaves

Eduardo Velasco-Barreras*, Yury Vorobiev

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

A geometric description of the first Poisson cohomology groups is given in the semilocal context, around (possibly singular) symplectic leaves. This result is based on the splitting theorems for infinitesimal automorphisms of coupling Poisson structures which describe the interaction between the tangential and transversal data of the characteristic distributions. As a consequence, we derive some criteria of vanishing of the first Poisson cohomology groups and apply the general splitting formulas to some particular classes of Poisson structures associated with singular symplectic foliations.

Idioma originalInglés
Páginas (desde-hasta)12-34
Número de páginas23
PublicaciónDifferential Geometry and its Application
Volumen59
DOI
EstadoPublicada - ago. 2018

Nota bibliográfica

Publisher Copyright:
© 2018 Elsevier B.V.

Huella

Profundice en los temas de investigación de 'On the splitting of infinitesimal Poisson automorphisms around symplectic leaves'. En conjunto forman una huella única.

Citar esto