Optimal strategies for adaptive zero-sum average Markov games

J. Adolfo Minjárez-Sosa*, Óscar Vega-Amaya

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

6 Citas (Scopus)

Resumen

We consider a class of discrete-time two person zero-sum Markov games with Borel state and action spaces, and possibly unbounded payoffs. The game evolves according to the recursive equation xn+1=F(xn, an, bn, ξn), n=0, 1, . . ., where the disturbance process {ξn} is formed by independent and identically distributed Rk-valued random vectors, which are observable but their common density ρ* is unknown for both players. Combining suitable methods of statistical estimation of ρ* with optimization procedures, we construct a pair of average optimal strategies.

Idioma originalInglés
Páginas (desde-hasta)44-56
Número de páginas13
PublicaciónJournal of Mathematical Analysis and Applications
Volumen402
N.º1
DOI
EstadoPublicada - 1 jun. 2013

Huella

Profundice en los temas de investigación de 'Optimal strategies for adaptive zero-sum average Markov games'. En conjunto forman una huella única.

Citar esto