Pattern Classification and Its Applications to Control of Biomechatronic Systems

Victor H. Benitez*

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoCapítulorevisión exhaustiva

4 Citas (Scopus)

Resumen

This chapter presents a new approach to identify, classify, and control biomechatronic systems, which are controlled via superficial electromyographic signals generated by the upper limbs. Electromyographic data are recorded while the hand of subjects is constricted to grasps a set of spheres with a small variation in diameter. Five muscles are monitored with noninvasive electrodes placed on the skin of volunteers while a set of grasp-hold-relax tasks are carried out randomly. A preprocess stage is performed to extract time domain features from the data, with the purpose of addressing both the course of dimensionality and the issues related to the nonstationary behavior of electromyographic signals. A pattern recognition module is used to classify the data and to assign the extracted features to categories corresponding to each sphere grasped. A tracking generator is proposed using artificial neural networks, which are trained to learn the dynamics of finger motions. The performance of the methodology is evaluated in simulations and via real-time implementation with an embedded system.

Idioma originalInglés
Título de la publicación alojadaArtificial Neural Networks for Engineering Applications
EditorialElsevier
Páginas139-154
Número de páginas16
ISBN (versión digital)9780128182475
ISBN (versión impresa)9780128182482
DOI
EstadoPublicada - 1 ene. 2019

Nota bibliográfica

Publisher Copyright:
© 2019 Elsevier Inc. All rights reserved.

Huella

Profundice en los temas de investigación de 'Pattern Classification and Its Applications to Control of Biomechatronic Systems'. En conjunto forman una huella única.

Citar esto