Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells

Patricia Haro-González, William T. Ramsay, Laura Martinez Maestro, Blanca Del Rosal, Karla Santacruz-Gomez, Maria Del Carmen Iglesias-De La Cruz, Francisco Sanz-Rodríguez, Jing Yuang Chooi, Paloma Rodriguez Sevilla, Marco Bettinelli, Debaditya Choudhury, Ajoy K. Kar, José García Solé, Daniel Jaque, Lynn Paterson*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

68 Citas (Scopus)

Resumen

Laser-induced thermal effects in optically trapped microspheres and single cells are investigated by quantum dot luminescence thermometry. Thermal spectroscopy has revealed a non-localized temperature distribution around the trap that extends over tens of micrometers, in agreement with previous theoretical models besides identifying water absorption as the most important heating source. The experimental results of thermal loading at a variety of wavelengths reveal that an optimum trapping wavelength exists for biological applications close to 820 nm. This is corroborated by a simultaneous analysis of the spectral dependence of cellular heating and damage in human lymphocytes during optical trapping. This quantum dot luminescence thermometry demonstrates that optical trapping with 820 nm laser radiation produces minimum intracellular heating, well below the cytotoxic level (43 °C), thus, avoiding cell damage.

Idioma originalInglés
Páginas (desde-hasta)2162-2170
Número de páginas9
PublicaciónSmall
Volumen9
N.º12
DOI
EstadoPublicada - 24 jun. 2013

Huella

Profundice en los temas de investigación de 'Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells'. En conjunto forman una huella única.

Citar esto