Revisiting the refraction of humans and ants through dijkstra´s algorithm

Julio Cesar Campos García, Oscar Rubén Gómez Aldama, Marco A López M, Viridiana Gómez, Mario H Uriarte M, L. Castro-A.*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

In this paper we revisit the study on the refraction of humans and ants, using graph theory to construct models of connected flat graph of both systems. Subsequently, the Dijkstra algorithm is implemented through a MATLAB code, with which the corresponding data matrices are obtained. These matrices provide the optimal time trajectories for each of the graphing models, in their different configurations. In the case of the human system, the prediction turned out to be of the same order as predicted by the Fermat Principle in that cited literature reference. In the case of ants, the predictions are quite coherent according to the elaborated models of graph, although these do not obey the original experimental arrangements.
Idioma originalEspañol (México)
Número de artículo2304
Páginas (desde-hasta)1-6
Número de páginas6
PublicaciónLatin American Journal Education
Volumen13
N.º2
EstadoPublicada - 15 feb. 2019

Nota bibliográfica

REFERENCES
[1] Aboites, V. and Pisarchik. A., Revista Mexicana de
Física E, Rev. Mex. E 53, 52-55 (2007).
[2] J. Oettler, V.S. Schmid, N. Zankl, O. Rey, A. Dress, J.
Heinze, Fermat's principle of least time predicts refraction
of ant trails at substrate borders, PLOS ONE 8, e59739
(2013).
[3] Dijkstra, E. W., A note on two problems in connexion
with graphs, Numerische Mathematik Springer-Verlag New
York, Inc. Secaucus 1, 269-271 (1959).
[4] Dramski, M., Naukowe Z., A Comparison between
Dijks algorithm and simplified ant colony optimization in
navigation, Maritime University of Szczecin 29, 25-29
(2012).
[5] Lee, J, Yang J, Int. J., Comput. Commun. 7, 482-493
(2012).
[6] Magzhan, K., Jani H., International Journal of Scientific
& Technology Research, 2, 99-104 (2013).
[7] Yoon J., Blumer A., Lee K., Bioinformatics
Applications Note 22, 3106-3108 (2006).
[8] Orlin, J. B., Madduri, K., Subramani, M. W., Journal of
Discrete Algorithms 8, 189-198 (2010).
[9] Cickovski, T., Peake E., Pulido V.A., Narasimhan G.,
Computational Advances in Bio and Medical Sciences
(ICCABS), INSPEC Accession Number: 15649637 (2015).
[10] Wang Q., Zhang Z., Zhang Y., Deng, Y., Journal of
Information & Computational Science 9, 1365-1371
(2012).
[11] Bonnet E., et al., BMC Systems Biology 7, 1-16 (2013).
[12] Coarasa, T. Z., Tamada, T., Lee E. J., Gonzalez R. F.,
The Company of Biologists 141, 2901-2911 (2014).
[13] Almeida V. T., Güting R. H., The 21st Annual ACM
Symposium on Applied Computing p. 58-62 (2006).
[14] Schroedl S., Journal of Artificial Intelligence Research
23, 587-623 (2005).
[15] Joshi T., Chen Y., Alexandrov N., Xu D.,
Bioinformatics Research and Applications 1, 335-350
(2006).
[16] Sharma P., Planiya A., Shortest Path Finding of
Wireless Optical Network using Dijkstra 3, 77-84 (2016).
Julio C. Campos G. et al.
Lat. Am. J. Phys. Educ. Vol. 13, No. 2, June 2019 2304-6 http://www.lajpe.org
[17] Uchida, K., 2014 Ninth International Conference on Broadband Wireless Computing Communication and Applications, 371-376 (2014).
[18] Azodolmolky S., et al., Computer Networks, 53, 926-944 (2009).
[19] Vijayanand C., Kumar M. S., Venugopal K. R., Computer Communications 23, 1223-1234 (2000).
[20] Huang S., Seshadri D., Dutta R., Global Telecommunications Conference, 2009, GLOBECOM 2009. IEEE, INSPEC North Texas University, USA 1-6 (2010).
[21] Liu G., Ramaktishnan K. G., INFOCOM 2001, Twetieth Annual Joint Conference of the IEEE Computer and Communications Societies, Proceedings IEEE, 743-749 (2001).
[22] Chow T. Y., Chudak F, French A.M., IEEE/ACM TRANSACTIONS ON NETWORKING 12, 539-548 (2004).
[23] Zang H., Jue J. P., Mukherjee B., Optical Networks Magazine 3, 47-60 (2000).
[24] T.R., Etherington, Curr. Landscape Ecol, Rep., 1, 40-53 (2016).
[25] Choi Y, Um J-G, Park M-H., Finding least-cost paths across a continuous raster surface with discrete vector networks, Pukyong National University, Korea 41, 75–85, (2014).
[26] Kovanen J, Sarjakoski T., Tilewise accumulated cost surface computation with graphics processing units.ACM Transactions on Spatial Algorithms and Systems 4, 271-298, (2015).

Palabras clave

  • Refraction
  • biological systems
  • Algorithm

Citar esto